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Multi-label Classification

Which Fruit?

apple orange strawberry

multi-class classification:
classify input (picture) to one category (label)
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Multi-label Classification

Which Fruits?

?: {orange, strawberry, kiwi}

apple orange strawberry

multi-label classification:
classify input to multiple (or no) categories
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Multi-label Classification

What Tags?

“ e v @@ @ A https//www.amazon.com/gp/product/1600490069

a Amazon.com: Learning From D... %

Learning From Data [Hardcover]
Yaser S. Abu-Mostafa [+] (Author), Malik Magdon-Ismail [~ (Author),
£ ~| (Author)

o ] (2 customer reviews) | [{] ©
LEARNING

From Available from these sellers.
DATA
" 1 new from $28.00

/

?: {machine learning, gdata-structure, data mining, ebjeet

oriented-pregramming, artificial intelligence, eempiler,
architecture, ehemistry, textbook, ehildrenbeok, —ete: }

another multi-label classification problem: J

tagging input to multiple categories

H.-T. Lin (NTU) Label Space Coding 3/29



Multi-label Classification

Binary Relevance: Multi-label Classification via

Yes/No
Binary Multi-label w/ L classes: L
Classification questions
{yes, no} machine learning (), data structure (N), data

mining (Y), OOP (N), Al (Y), compiler (N),
architecture (N), chemistry (N), textbook (Y),
children book (N), efc.

« Binary Relevance approach:
transformation to multiple isolated binary classification
 disadvantages:
e isolation—hidden relations not exploited (e.g. ML and DM highly
correlated, ML subset of Al, textbook & children book disjoint)
e unbalanced—few yes, many no

Binary Relevance: simple (& good) benchmark with
known disadvantages J
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Multi-label Classification

Multi-label Classification SetuE

N examples (input x,,, label-set V) € X x 21121}
e fruits: X = encoding(pictures), Y, C {1,2,---,4}
e tags: X = encoding(merchandise), Y, C {1,2,--- ,L}

Goal

a multi-label classifier g(x) that closely predicis the label-set )
associated with some unseen inputs x (by exploiting hidden
relations/combinations between labels)

0/1 loss: any discrepancy [g(x) # V]
Hamming loss: averaged symmetric difference 1Z|g(x) A Y

multi-label classification: hot and important J
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Compression Coding

From Label-set to Coding View

label set apple orange strawberry | binary code
R vi={r oN 1M 0N |y1=[010]
@0 »m={ao0} 1(V) 1(V 0 (N) y2 =[1,1,0]
8® Y;={as} 1(Y) ON) 1.(Y) ys =[1,0,1]
©  Yi={o} 0(N) 1Y) 0 (N) ys=1[0,1,0]
Ys={}  OMN) 0Ny  O(N) |ys=[0,0,0]

subset Y of 2{12:L} & |ength-L binary code y ]

H.-T. Lin (NTU) Label Space Coding 6/29



Compression Coding

Existing Approach: Compressive Sensing

General Compressive Sensing

sparse (many 0) binary vectors y € {0, 1} can be robustly
compressed by projecting to M < L basis vectors {p1,p2, - ,Pm}

Compressive Sensing for Multi-label Classification (Hsu et al., 2009)

compress: transform {(x,,yn)} to {(xn,€n)} by ¢, = Py, with
some M by L random matrix P = [py, P2, ,pm] "

learn: get regression function r(x) from x, to ¢,
decode: g(x) = find closest sparse binary vector to P7r(x)

Compressive Sensing:
e efficient in training: random projection w/ M < L
e inefficient in testing: time-consuming decoding
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Compression Coding

From Coding View to Geometric View

label set binary code
R vi={} |yi=[01.0]
®0 »={ao} | y2=[1,1,0]
8% );={a s} |ys=1[1.01]
©  vi={o} |ysi=1[0.1,0]
L] »={ |ys=[00,0]

Y1, Y4 2

V
Jo

length-L binary code < vertex of hypercube {0, 1}- J
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Compression Coding

Geometric Interpretation of Binary Relevance

Y1, Y4 >
Vv

Yo

A

Binary Relevance: project to the natural axes & classify J
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Compression Coding

Geometric Interpretation of Compressive Sensing

Y1, Y4 2

V

J I

Compressive Sensing:
e project to random flat (linear subspace)

e |earn “on” the flat; decode to closest sparse vertex

other (better) flat? other (faster) decoding?

H.-T. Lin (NTU) Label Space Coding 10/29



Compression Coding

Our Contributions

Compression Coding &
Learnable-Compression Coding

A Novel Approach for Label Space Compression

e algorithmic: first known algorithm for feature-aware
dimension reduction with fast decoding

e theoretical: justification for best learnable projection

¢ practical: consistently better performance than
compressive sensing (& binary relevance)

will now introduce the key ideas behind the approach J
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Compression Coding

Faster Decoding: Round-based

Compressive Sensing Revisited

« decode: g(x) = find closest sparse binary vector to y = Pr(x)

For any given “intermediate prediction” (real-valued vector) y,

find closest sparse binary vector to y: slow
optimization of /1-regularized objective

find closest any binary vector to y: fast

g(x) = round(y)

round-based decoding: simple & faster alternative ]
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Compression Coding

Better Projection: Principal Directions

Compressive Sensing Revisited

o compress: transform {(X,¥n)} to {(Xn,¢n)} by €, = Py, with
some M by L random matrix P

random projection: arbitrary directions
best projection: principal directions

principal directions: best approximation to desired out-
put y, during compression (why?) J
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Compression Coding

Novel Theoretical Guarantee

Linear Transform + Learn + Round-based Decoding

Theorem (Tai and Lin, 2012)
If g(x) = round(PTr(x)),

(o] (o]
1 PO PO
719x) A Y| <const- | [r(x) — Py |+ |ly—P" Py |*
Y learn compress

Hamming loss

e [[r(x) — ¢||?: prediction error from input to codeword
o |ly — P'c||?: encoding error from desired output to codeword

principal directions: best approximation to
desired output y, during compression (indeed) J
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Compression Coding

Proposed Approach 1:
Principal Label Space Transform

From Compressive Sensing to ixd¥1I

¢} compress: transform {(X,,yn)} to {(Xn,€n)} by ¢, = Py, with the
M by L principal matrix P

@ learn: get regression function r(x) from x, to ¢,
@ decode: g(x) = round(Pr(x))

e principal directions: via Principal Component Analysis on {y,,}ﬁ:1
¢ physical meaning behind pm,: key (linear) label correlations

PLST: improving CS by projecting to key correlations J
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Compression Coding

Theoretical Guarantee of PLST Revisited
Linear Transform + Learn + Round-based Decoding

Theorem (Tai and Lin, 2012)
If g(x) = round(PTr(x)),

Cc Cc
1 ~~ ~~
7lax) A Y| <const- | |r(x) — Py |°+ |ly—P Py |
learn compress

Hamming loss

o |ly — PTc||?: encoding error, minimized during encoding
o [[r(x) — c|/: prediction error, minimized during learning
¢ but good encoding may not be easy to learn; vice versa

PLST: minimize two errors separately (sub-optimal)
(can we do better by minimizing jointly?) J
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Compression Coding

Proposed Approach 2:

Conditional Principal Label Space Transform
can we do better by minimizing jointly?
Yes and easy for ridge regression (closed-form solution) J

From PLST to [e{xESH

compress: transform {(x,,yn)} to {(xn, cn)} by ¢, = Py, with the
M by L conditional principal matrix P

learn: get regression function r(x) from x, to ¢, ideally
using ridge regression

decode: g(x) = round(PTr(x))

« conditional principal directions: top eigenvectors of YT XX'Y, key
(linear) label correlations that are “easy to learn”

CPLST: project to key learnable correlations
—can also pair with kernel regression (non-linear) J
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Compression Coding

Hamming Loss Comparison: Full-BR, PLST & CS

=== Full-BR (no reduction) === Full-BR (no reduction)
Cs Cs
voel —-PLST voel —-PLST
s Dy e ) e L —
mediamill (Linear Regression) mediamill (Decision Tree)

e PLST better than Full-BR: fewer dimensions, similar (or
better) performance

e PLST better than CS: faster, better performance

e similar findings across data sets and regression
algorithms
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Compression Coding

Hamming Loss Comparison: PLST & CPLST

#of dimension

yeast (Linear Regression)
e CPLST better than PLST: better performance across all
dimensions

e similar findings across data sets and regression
algorithms
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Error-correction Coding

Topics in this Talk

© Compression Coding
—condense for efficiency
—capture hidden correlation

® Learnable-Compression Coding
—condense-by-learnability for better efficiency
—capture hidden & learnable correlation

® Error-Correction Coding
—eXxpand for accuracy
—capture hidden combination
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Error-correction Coding

Our Contributions (Second Part)

Error-correction Coding

A Novel Framework for Label Space Error-correction

e algorithmic: generalize an popular existing algorithm
(RAKEL; Tsoumakas & Vlahavas, 2007) and explain through
coding view

e theoretical: link learning performance to
error-correcting ability

e practical: explore choices of error-correcting code
and obtain better performance than RAKEL (&
binary relevance)
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Error-correction Coding

Key Idea: Redundant Information

General Error-correcting Codes (ECC)
noisy channel

[1]o[1]1] — [1]o[1]1]o]1]o] =——=—==> [1]o]o[1]o]1]o] — [1]o]1]1]
e commonly used in communication systems

» detect & correct errors after transmitting data over a noisy channel
e encode data redundantly

v

ECC for Machine Learning (successful for multi-class classification)

predictions of b

[1]o[11] — [1Jo[1]1]o]1]o] =——==> [1]o]o[1]o]1]o] — [1o]1]1]

learn redundant bits = correct prediction errors |
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Error-correction Coding

Proposed Framework: Multi-labeling with ECC
/@nyn) i A ((@n. bIEL,

b, = enc(y,,)
v

[multi—label learner]

v § = dec(b)

[ i o> T 7 ]

« encode to add redundant information enc(-): {0,1}t — {0,1}M
¢ decode to locate most possible binary vector

dec(-): {0,1}M — {0,1}-
o transformation to larger multi-label classification with labels b

PLST: M < L (works for large L);
MLECC: M > L (works for small L)
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Error-correction Coding

Simple Theoretical Guarantee

ECC encode + Larger Multi-label Learning + ECC decode

Let g(x) = dec(b) with b = h(x). Then,

Hamming loss of h(x)
ECC strength + 1

la(x) # V] < const. -
N —
0/1 loss

PLST: principal directions + decent regression
MLECC: which ECC balances strength & difficulty? J
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Error-correction Coding

Simplest ECC: Repetition Code

cye{0,1}t = be{0,1}M

- repeat each bit ¥ times

L=4,M=28:1010 — 1111111000000011111110000000
——

28 __
B_yz

« permute the bits randomly

:be {0, 1M 5 ye {01}t

+ majority vote on each original bit
L =4, M = 28: strength of repetition code (REP) = 3

RAKEL = REP (code) + a special powerset (channel) J
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Error-correction Coding

Slightly More Sophisticated: Hamming Code
HAM(7,4) Code
« {0,1}* — {0,1}’ via adding 3 parity bits
—physical meaning: label combinations
c b=y @Y1 @Y =YD )2 DYz, b =Y1 DY2D Y3
* eg. 1011 — 1011010
« strength = 1 (weak)

Our Proposed Code: Hamming on Repetition (HAMR)
{0 1 {0 1}4M HAM(7,4) on each 4-bit bIock ™

L =4, M = 28: strength of HAMR = 4 better than REP!

L REP, REP

HAMR + the special powerset:
improve RAKEL on code strength
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Error-correction Coding

Even More Sophisticated Codes

Bose-Chaudhuri-Hocquenghem Code (BCH)
+ modern code in CD players
« sophisticated extension of Hamming, with more parity bits
« codeword length M =2P — 1 forp e N
« L=4,M =31, strength of BCH =5

Low-density Parity-check Code (LDPC)
« modern code for satellite communication
» connect ECC and Bayesian learning
« approach the theoretical limit in some cases

let’s compare! J
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Error-correction Coding

Different ECCs on 3-label Powerset (scene data setw/ L = 6)

learner: special powerset with Random Forests
REP + special powerset ~ RAKEL J

0/t loss

-0~ REP A~ BCH 0.086) —~0- REP A BCH
037 — HAMR — LDPG 0.085 —# HAMR — LDPG
0.36]
W oo
035 9 0o
o

@
03 T oo
03 0.078]
029 0.077]

o 30 40 50 80 70 80 90 100 110 120 130 30 40 50 60 70 80 90 100 110 120 130
codeword length codeword length
o .

Comparing to RAKEL (on most of data sets),
e HAMR: better 0/1 loss, similar Hamming loss
o BCH: even better 0/1 loss, pay for Hamming loss
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Conclusion

@ Compression Coding (Tai & Lin, MLD Workshop 2010; NC Journal 2012)
—condense for efficiency: better (than BR) approach PLST

— key tool: PCA from Statistics/Signal Processing

® Learnable-Compression Coding (Chen & Lin, NIPS Conference 2012)
—condense learnably for better efficiency: better (than PLST)
approach CPLST
— key tool: Ridge Regression from Statistics (+ PCA)

©® Error-correction Coding (Ferng & Lin, ACML Conference 2011, TNNLS Journal
2013)
—expand for accuracy: better (than REP) code HAMR or BCH

— key tool: ECC from Information Theory

Thank you! Questions? |
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