Label Space Coding for Multi-label Classification

Hsuan-Tien Lin
National Taiwan University
Talk at NTHU, 04/11/2014

joint works with

Farbound Tai (MLD Workshop 2010, NC Journal 2012) &
Chun-Sung Ferng (ACML Conference 2011, IEEE TNNLS Journal 2013) &
Yao-Nan Chen (NIPS Conference 2012)
Multi-label Classification

Which Fruit?

apple orange strawberry kiwi

multi-class classification:
classify input (picture) to **one category** (label)
—How?
Multi-label Classification

Supervised Machine Learning

Parent

(picture, category) pairs

Truth \(f(x) + \text{noise } e(x) \)

examples (picture \(x_n \), category \(y_n \))

Kid's brain

good decision function

possibilities

learning algorithm

good decision function

learning model \(\{g_\alpha(x)\} \)

challenge:
see only \(\{(x_n, y_n)\} \) without knowing \(f(x) \) or \(e(x) \)

\(\Rightarrow \) generalize to unseen \((x, y) \) w.r.t. \(f(x) \)
Multi-label Classification

Which Fruits?

?: \{orange, strawberry, kiwi\}

apple orange strawberry kiwi

multi-label classification:
classify input to multiple (or no) categories
Multi-label Classification via Multi-class

Powerset: Multi-label Classification via Multi-class

Multi-class w/ $L = 4$ classes

- 4 possible outcomes
 - $\{a, o, s, k\}$

Multi-label w/ $L = 4$ classes

- $2^4 = 16$ possible outcomes
 - $2^{\{a, o, s, k\}}$
 - $\{\emptyset, a, o, s, k, ao, as, ak, os, ok, sk, aos, aok, ask, osk, aosk\}$

- **Powerset** approach: transformation to multi-class classification
- difficulties for large L:
 - **computation** (super-large 2^L)
 - hard to construct classifier
 - **sparsity** (no example for some of 2^L)
 - hard to discover hidden combination

Powerset: feasible only for small L with enough examples for every combination
Multi-label Classification

What Tags?

?: \{machine learning, data-structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ...etc. \}

another multi-label classification problem: tagging input to multiple categories
Binary Relevance: Multi-label Classification via Yes/No

Binary Classification

\{yes, no\}

Multi-label with L classes: L yes/no questions

- machine learning (Y), data structure (N), data mining (Y), OOP (N), AI (Y), compiler (N), architecture (N), chemistry (N), textbook (Y), children book (N), etc.

Binary Relevance approach:

transformation to multiple isolated binary classification

- **disadvantages:**
 - isolation—hidden relations not exploited (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - unbalanced—few yes, many no

Binary Relevance: simple (& good) benchmark with known disadvantages
Multi-label Classification

Multi-label Classification Setup

Given

\[N \text{ examples (input } x_n, \text{ label-set } Y_n) \in \mathcal{X} \times 2^{\{1,2,\cdots,L\}} \]

- **fruits**: \(\mathcal{X} = \text{encoding}(\text{pictures}), \ Y_n \subseteq \{1,2,\cdots,4\} \)
- **tags**: \(\mathcal{X} = \text{encoding}(\text{merchandise}), \ Y_n \subseteq \{1,2,\cdots,L\} \)

Goal

a multi-label classifier \(g(x) \) that **closely predicts** the label-set \(Y \) associated with some **unseen** inputs \(x \) (by exploiting hidden relations/combinations between labels)

- **0/1 loss**: any discrepancy \([g(x) \neq Y] \)
- **Hamming loss**: averaged symmetric difference \(\frac{1}{L} |g(x) \triangle Y| \)

multi-label classification: hot and important
Topics in this Talk

1. Compression Coding
 —condense for efficiency
 —capture hidden correlation

2. Error-correction Coding
 —expand for accuracy
 —capture hidden combination

3. Learnable-Compression Coding
 —condense-by-learnability for better efficiency
 —capture hidden & learnable correlation
<table>
<thead>
<tr>
<th>label set</th>
<th>apple</th>
<th>orange</th>
<th>strawberry</th>
<th>binary code</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{Y}_1 = {o}$</td>
<td>0 (N)</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>$y_1 = [0, 1, 0]$</td>
</tr>
<tr>
<td>$\mathcal{Y}_2 = {a, o}$</td>
<td>1 (Y)</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>$y_2 = [1, 1, 0]$</td>
</tr>
<tr>
<td>$\mathcal{Y}_3 = {a, s}$</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>1 (Y)</td>
<td>$y_3 = [1, 0, 1]$</td>
</tr>
<tr>
<td>$\mathcal{Y}_4 = {o}$</td>
<td>0 (N)</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>$y_4 = [0, 1, 0]$</td>
</tr>
<tr>
<td>$\mathcal{Y}_5 = {}$</td>
<td>0 (N)</td>
<td>0 (N)</td>
<td>0 (N)</td>
<td>$y_5 = [0, 0, 0]$</td>
</tr>
</tbody>
</table>

Subset \mathcal{Y} of $2^{\{1,2,\ldots,L\}} \Leftrightarrow$ length-L binary code y
Existing Approach: Compressive Sensing

General Compressive Sensing

Sparse (many 0) binary vectors $\mathbf{y} \in \{0, 1\}^L$ can be **robustly compressed** by projecting to $M \ll L$ basis vectors $\{\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_M\}$.

Compressive Sensing for Multi-label Classification (Hsu et al., 2009)

1. **compress**: transform $\{(\mathbf{x}_n, \mathbf{y}_n)\}$ to $\{(\mathbf{x}_n, \mathbf{c}_n)\}$ by $\mathbf{c}_n = \mathbf{P}\mathbf{y}_n$ with some M by L random matrix $\mathbf{P} = [\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_M]^T$.
2. **learn**: get regression function $\mathbf{r}(\mathbf{x})$ from \mathbf{x}_n to \mathbf{c}_n.
3. **decode**: $g(\mathbf{x}) = \text{find closest sparse binary vector to } \mathbf{P}^T\mathbf{r}(\mathbf{x})$.

Compressive Sensing:

- **efficient in training**: random projection w/ $M \ll L$
 (*any better projection scheme?*)
- **inefficient in testing**: time-consuming decoding
 (*any faster decoding method?*)
Compression Coding

A Novel Approach for Label Space Compression

- algorithmic: scheme for fast decoding
- theoretical: justification for best projection
- practical: significantly better performance than compressive sensing (& binary relevance)
Faster Decoding: Round-based

Compressive Sensing Revisited

- **decode**: \(g(x) = \text{find closest sparse binary vector to } \tilde{y} = P^T r(x) \)

For any given “intermediate prediction” (real-valued vector) \(\tilde{y} \),

- find closest **sparse** binary vector to \(\tilde{y} \): slow
 - optimization of \(\ell_1 \)-regularized objective
- find closest **any** binary vector to \(\tilde{y} \): fast

\[
g(x) = \text{round}(y)
\]

round-based decoding: simple & faster alternative
Better Projection: Principal Directions

Compressive Sensing Revisited

- **compress**: transform \(\{(x_n, y_n)\} \) to \(\{(x_n, c_n)\} \) by \(c_n = P y_n \) with some \(M \) by \(L \) random matrix \(P \)

- **random projection**: arbitrary directions
- **best projection**: principal directions

principal directions: best approximation to desired output \(y_n \) during compression (**why?**)

H.-T. Lin (NTU)
Theorem (Tai and Lin, 2012)

If $g(x) = \text{round}(P^T r(x))$, then

$$\frac{1}{L} \left| g(x) \triangle Y \right| \leq \text{const} \cdot \left(\left\| r(x) - \hat{P} y \right\|^2 + \left\| y - P^T \hat{P} y \right\|^2 \right)$$

- $\left\| r(x) - c \right\|^2$: prediction error from input to codeword
- $\left\| y - P^T c \right\|^2$: encoding error from desired output to codeword

Principal directions: best approximation to desired output y_n during compression (indeed)
Proposed Approach: Principal Label Space Transform

From Compressive Sensing to PLST

1. **compress**: transform \(\{(x_n, y_n)\} \) to \(\{(x_n, c_n)\} \) by \(c_n = Py_n \) with the \(M \times L \) principal matrix \(P \)

2. **learn**: get regression function \(r(x) \) from \(x_n \) to \(c_n \)

3. **decode**: \(g(x) = \text{round}(P^T r(x)) \)

- principal directions: via Principal Component Analysis on \(\{y_n\}_{n=1}^N \)
- physical meaning behind \(p_m \): key (linear) label correlations

PLST: improving CS by projecting to key correlations
PLST better than Full-BR: fewer dimensions, similar (or better) performance

PLST better than CS: faster, better performance

similar findings across data sets and regression algorithms
Semi-summary on PLST

- project to **principal directions** and capture key correlations
- efficient learning (after **label space compression**)
- efficient decoding (**round-based**)
- sound theoretical guarantee + **good practical performance** (better than CS & BR)

expansion (channel coding) instead of compression ("lossy" source coding)? **YES**!
Error-correction Coding

A Novel Framework for Label Space Error-correction

- algorithmic: generalize an popular existing algorithm (RAkEL; Tsoumakas & Vlahavas, 2007) and explain through coding view
- theoretical: link learning performance to error-correcting ability
- practical: explore choices of error-correcting code and obtain better performance than RAkEL (binary relevance)
Key Idea: Redundant Information

General Error-correcting Codes (ECC)

- commonly used in communication systems
- detect & correct errors after transmitting data over a noisy channel
- encode data redundantly

ECC for Machine Learning (successful for multi-class classification)

- learn redundant bits \implies correct prediction errors
Proposed Framework: Multi-labeling with ECC

- **Encode** to add redundant information $\text{enc}(\cdot): \{0, 1\}^L \rightarrow \{0, 1\}^M$
- **Decode** to locate most possible binary vector $\text{dec}(\cdot): \{0, 1\}^M \rightarrow \{0, 1\}^L$
- Transformation to larger multi-label classification with labels \mathbf{b}

- **PLST**: $M \ll L$ (works for large L);
- **MLECC**: $M > L$ (works for small L)
Simple Theoretical Guarantee

Theorem

Let \(g(x) = \text{dec}(\tilde{b}) \) with \(\tilde{b} = h(x) \). Then,

\[
\left\lfloor g(x) \neq y \right\rfloor \leq \text{const.} \cdot \frac{\text{Hamming loss of } h(x)}{\text{ECC strength} + 1}.
\]

PLST: principal directions + decent regression

MLECC: which ECC balances strength & difficulty?
Simplest ECC: Repetition Code

Encoding: \(y \in \{0, 1\}^L \rightarrow b \in \{0, 1\}^M \)

- repeat each bit \(\frac{M}{L} \) times

\[L = 4, M = 28 : 1010 \rightarrow \underbrace{1111111}_{28} 000000011111110000000 \]

\(\frac{28}{4} = 7 \)

- permute the bits randomly

Decoding: \(\tilde{b} \in \{0, 1\}^M \rightarrow \tilde{y} \in \{0, 1\}^L \)

- majority vote on each original bit

\(L = 4, M = 28: \text{strength of repetition code (REP)} = 3 \)

RAkEL = REP (code) + a special powerset (channel)
Slightly More Sophisticated: Hamming Code

HAM(7, 4) Code

- \(\{0, 1\}^4 \rightarrow \{0, 1\}^7 \) via adding 3 *parity bits*
 - Physical meaning: label combinations
- \(b_4 = y_0 \oplus y_1 \oplus y_3, \ b_5 = y_0 \oplus y_2 \oplus y_3, \ b_6 = y_1 \oplus y_2 \oplus y_3 \)
- E.g. 1011 → 1011010
- Strength = 1 (weak)

Our Proposed Code: Hamming on Repetition (HAMR)

\[
\begin{align*}
\{0, 1\}^L \xrightarrow{\text{REP}} \{0, 1\}^{4M/7} & \quad \text{HAM(7, 4) on each 4-bit block} \\
\rightarrow \{0, 1\}^{7M/7}
\end{align*}
\]

\(L = 4, \ M = 28: \) strength of HAMR = 4 better than REP!

HAMR + the special powerset: improve RAKEL on code strength
Bose-Chaudhuri-Hocquenghem Code (BCH)

- modern code in **CD players**
- sophisticated extension of Hamming, with **more parity bits**
- codeword length $M = 2^p - 1$ for $p \in \mathbb{N}$
- $L = 4$, $M = 31$, strength of BCH = 5

Low-density Parity-check Code (LDPC)

- modern code for **satellite communication**
- connect ECC and Bayesian learning
- approach the theoretical limit in some cases

let’s compare!
Different ECCs on 3-label Powerset \((\text{scene data set w/ } L = 6)\)

- learner: special powerset with Random Forests
- REP + special powerset \(\approx\) RAkEL

Comparing to RAkEL (on most of data sets),

- HAMR: **better 0/1 loss**, similar Hamming loss
- BCH: **even better 0/1 loss**, pay for Hamming loss
transformation to **larger multi-label classification**

- encode via **error-correcting code** and capture label combinations (parity bits)
- effective decoding (**error-correcting**)
- simple theoretical guarantee + **good practical performance**
 - to **improve RAkEL**, replace REP by
 - HAMR \Rightarrow lower 0/1 loss, similar Hamming loss
 - BCH \Rightarrow even lower 0/1 loss, but higher Hamming loss
- to **improve Binary Relevance**, · · ·
Theoretical Guarantee of PLST Revisited

Linear Transform + Learn + Round-based Decoding

Theorem (Tai and Lin, 2012)

If $g(x) = \text{round}(P^T r(x))$,

$$\frac{1}{L} |g(x) \triangle Y| \leq \text{const} \cdot \left(\| r(x) - P y \|_2^2 + \| y - P^T P y \|_2^2 \right)$$

- $\| y - P^T c \|_2^2$: encoding error, minimized during encoding
- $\| r(x) - c \|_2^2$: prediction error, minimized during learning
- but good encoding may not be easy to learn; vice versa

PLST: minimize two errors separately (sub-optimal) (can we do better by minimizing jointly?)
A Novel Approach for Label Space Compression

- algorithmic: first known algorithm for feature-aware dimension reduction
- theoretical: justification for best learnable projection
- practical: consistently better performance than PLST
The In-Sample Optimization Problem

\[
\min_{r,P} \left(\left\| r(X) - PY \right\|^2 + \left\| Y - P^T PY \right\|^2 \right)
\]

- start from a well-known tool: linear regression as \(r \)
 \[
r(X) = XW
\]
- for fixed \(P \): a closed-form solution for learn is
 \[
 W^* = X^\dagger PY
 \]

optimal \(P \):

<table>
<thead>
<tr>
<th>for learn</th>
<th>for compress</th>
<th>for both</th>
</tr>
</thead>
<tbody>
<tr>
<td>top eigenvectors of (Y^T (I - XX^\dagger) Y)</td>
<td>top eigenvectors of (Y^T Y)</td>
<td>top eigenvectors of (Y^T XX^\dagger Y)</td>
</tr>
</tbody>
</table>
Proposed Approach: **Conditional Principal Label Space Transform**

From PLST to CPLST

1. **compress**: transform \(\{(x_n, y_n)\} \) to \(\{(x_n, c_n)\} \) by \(c_n = Py_n \) with the \(M \) by \(L \) **conditional principal** matrix \(P \)

2. **learn**: get **regression** function \(r(x) \) from \(x_n \) to \(c_n \), ideally using linear regression

3. **decode**: \(g(x) = \text{round}(P^T r(x)) \)

- **Conditional principal directions**: top eigenvectors of \(Y^T XX^+ Y \)
- **Physical meaning behind** \(p_m \): key (linear) label correlations that are “easy to learn”

CPLST: project to **key learnable correlations** —can also pair with **kernel regression** (non-linear)
CPLST better than PLST: better performance across all dimensions

similar findings across data sets and regression algorithms
Semi-summary on CPLST

- Project to **conditional** principal directions and capture **key learnable** correlations
- More efficient
- Sound theoretical guarantee (via PLST) + **good practical performance** (better than PLST)

CPLST: **state-of-the-art** for label space compression
Conclusion

1. **Compression Coding** (Tai & Lin, MLD Workshop 2010; NC Journal 2012)
 - **condense** for efficiency: better (than BR) approach PLST
 - key tool: PCA from Statistics/Signal Processing

2. **Error-correction Coding** (Ferng & Lin, ACML Conference 2011)
 - **expand** for accuracy: better (than REP) code HAMR or BCH
 - key tool: ECC from Information Theory

3. **Learnable-Compression Coding** (Chen & Lin, NIPS Conference 2012)
 - **condense** for efficiency: better (than PLST) approach CPLST
 - key tool: Linear Regression from Statistics (+ PCA)

More......

- beyond standard ECC-decoding (Ferng and Lin, IEEE TNNLS 2013)
- coupling CPLST with other regressor (Chen and Lin, NIPS 2012)
- multi-label classification with arbitrary loss (Li and Lin, ICML 2014)
- dynamic instead of static coding, combine ML-ECC & PLST/CPLST (...)

Thank you! Questions?