Label Space Coding for Multi-label Classification

Hsuan-Tien Lin
National Taiwan University
Talk at NCTU, 05/01/2013

joint works with
Farbound Tai (MLD Workshop 2010, NC Journal 2012) &
Chun-Sung Ferng (ACML Conference 2011, NTU Thesis 2012) &
Yao-Nan Chen (NIPS Conference 2012, NTU Thesis 2012)
Multi-label Classification

Which Fruit?

apple orange strawberry kiwi

multi-class classification:
classify input (picture) to **one category** (label)
—How?
Multi-label Classification

Supervised Machine Learning

Parent

\[(\text{picture, category}) \text{ pairs}\]

Truth \(f(x) + \text{noise } e(x) \)

\[(\text{examples (picture } x_n, \text{category } y_n)\]

Kid's brain

\[\text{good decision function}\]

learning algorithm

\[\text{good decision function}\]

\[g(x) \approx f(x)\]

learning model \(\{g_{\alpha}(x)\}\)

possibilities

challenge:

see only \(\{(x_n, y_n)\}\) without knowing \(f(x) \) or \(e(x) \)

\[\Rightarrow \text{generalize to unseen } (x, y) \text{ w.r.t. } f(x)\]
Which Fruits?

?: \{orange, strawberry, kiwi\}

apple orange strawberry kiwi

multi-label classification:
classify input to multiple (or no) categories
Powerset: Multi-label Classification via Multi-class

<table>
<thead>
<tr>
<th>Multi-class w/ $L = 4$ classes</th>
<th>Multi-label w/ $L = 4$ classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 possible outcomes</td>
<td>$2^4 = 16$ possible outcomes</td>
</tr>
<tr>
<td>${a, o, s, k}$</td>
<td>$2^{{a, o, s, k}}$</td>
</tr>
</tbody>
</table>

\uparrow

$\{\phi, a, o, s, k, ao, as, ak, os, ok, sk, aos, aok, ask, osk, aok\}$

- **Powerset** approach: transformation to multi-class classification
- **Powerset** approach: transformation to multi-class classification
- difficulties for large L:
 - **computation** (super-large 2^L)
 - hard to construct classifier
 - **sparsity** (no example for some of 2^L)
 - hard to discover hidden combination

Powerset: feasible only for small L with enough examples for every combination
What **Tags**?

?: \{ machine learning, data structure, data mining, object oriented programming, artificial intelligence, compiler, architecture, chemistry, textbook, children book, ... etc. \}

another **multi-label** classification problem: **tagging** input to multiple categories
Multi-label Classification

Binary Relevance: Multi-label Classification via Yes/No

- **Binary Classification**
 \{yes, no\}

- **Multi-label w/ \(L\) classes**: \(L\) yes/no questions
 - machine learning (Y), data structure (N), data mining (Y), OOP (N), AI (Y), compiler (N), architecture (N), chemistry (N), textbook (Y), children book (N), etc.

- **Binary Relevance** approach:
 transformation to **multiple isolated binary classification**

- **Disadvantages**:
 - **isolation**—hidden relations not exploited (e.g. ML and DM highly correlated, ML subset of AI, textbook & children book disjoint)
 - **unbalanced**—few yes, many no

Binary Relevance: simple (& good) benchmark with known disadvantages
Multi-label Classification Setup

Given

- **N** examples (input \(x_n \), label-set \(\mathcal{Y}_n \)) \(\in \mathcal{X} \times 2^{\{1,2,\cdots,L\}} \)
- **fruits**: \(\mathcal{X} = \text{encoding(pictures)}, \mathcal{Y}_n \subseteq \{1,2,\cdots,4\} \)
- **tags**: \(\mathcal{X} = \text{encoding(merchandise)}, \mathcal{Y}_n \subseteq \{1,2,\cdots,L\} \)

Goal

- a multi-label classifier \(g(x) \) that **closely predicts** the label-set \(\mathcal{Y} \) associated with some **unseen** inputs \(x \) (by exploiting hidden relations/combinations between labels)
 - **0/1 loss**: any discrepancy \([g(x) \neq \mathcal{Y}] \)
 - **Hamming loss**: averaged symmetric difference \(\frac{1}{L} \left| g(x) \triangle \mathcal{Y} \right| \)

multi-label classification: **hot and important**
Topics in this Talk

1. Compression Coding
 — *condense* for efficiency
 — capture hidden correlation

2. Error-correction Coding
 — *expand* for accuracy
 — capture hidden combination

3. Learnable-Compression Coding
 — *condense-by-learnability* for **better** efficiency
 — capture hidden & **learnable** correlation
From Label-set to Coding View

Label set

<table>
<thead>
<tr>
<th>Label set</th>
<th>apple</th>
<th>orange</th>
<th>strawberry</th>
<th>Binary Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{Y}_1 = {o}$</td>
<td>0 (N)</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>$y_1 = [0, 1, 0]$</td>
</tr>
<tr>
<td>$\mathcal{Y}_2 = {a, o}$</td>
<td>1 (Y)</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>$y_2 = [1, 1, 0]$</td>
</tr>
<tr>
<td>$\mathcal{Y}_3 = {a, s}$</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>1 (Y)</td>
<td>$y_3 = [1, 0, 1]$</td>
</tr>
<tr>
<td>$\mathcal{Y}_4 = {o}$</td>
<td>0 (N)</td>
<td>1 (Y)</td>
<td>0 (N)</td>
<td>$y_4 = [0, 1, 0]$</td>
</tr>
<tr>
<td>$\mathcal{Y}_5 = {}$</td>
<td>0 (N)</td>
<td>0 (N)</td>
<td>0 (N)</td>
<td>$y_5 = [0, 0, 0]$</td>
</tr>
</tbody>
</table>

Subset \mathcal{Y} of $2^{\{1, 2, \ldots, L\}} \leftrightarrow \text{length-}L \text{ binary code } y$
Existing Approach: Compressive Sensing

General Compressive Sensing

sparse (many 0) binary vectors \(y \in \{0, 1\}^L \) can be robustly compressed by projecting to \(M \ll L \) basis vectors \(\{p_1, p_2, \ldots, p_M\} \).

Compressive Sensing for Multi-label Classification (Hsu et al., 2009)

1. compress: transform \(\{(x_n, y_n)\} \) to \(\{(x_n, c_n)\} \) by \(c_n = P y_n \) with some \(M \) by \(L \) random matrix \(P = [p_1, p_2, \ldots, p_M]^T \).
2. learn: get regression function \(r(x) \) from \(x_n \) to \(c_n \).
3. decode: \(g(x) = \) find closest sparse binary vector to \(P^T r(x) \).

Compressive Sensing:

- efficient in training: random projection w/ \(M \ll L \) (any better projection scheme?)
- inefficient in testing: time-consuming decoding (any faster decoding method?)
Compression Coding

A Novel Approach for Label Space Compression

- algorithmic: scheme for **fast decoding**
- theoretical: justification for **best projection**
- practical: **significantly better performance** than compressive sensing (and binary relevance)
Compressive Sensing Revisited

- **decode**: $g(x) = \text{find closest sparse binary vector to } \tilde{y} = P^T r(x)$

For any given “intermediate prediction” (real-valued vector) \tilde{y},

- find closest **sparse** binary vector to \tilde{y}: slow
 optimization of ℓ_1-regularized objective
- find closest **any** binary vector to \tilde{y}: fast

$$g(x) = \text{round}(y)$$

round-based decoding: simple & faster alternative
Better Projection: Principal Directions

Compressive Sensing Revisited

- **compress**: transform \(\{(x_n, y_n)\} \) to \(\{(x_n, c_n)\} \) by \(c_n = Py_n \) with some \(M \) by \(L \) random matrix \(P \)

- random projection: arbitrary directions
- best projection: principal directions

principal directions: best approximation to desired output \(y_n \) during compression (why?)
Theorem (Tai and Lin, 2012)

If \(g(x) = \text{round}(P^T r(x)) \),

\[
\frac{1}{L} |g(x) \triangle \mathcal{Y}| \leq \text{const} \cdot \left(\|r(x) - \hat{Py}\|^2 + \|y - P^T \hat{Py}\|^2 \right)
\]

- \(\|r(x) - c\|^2 \): prediction error from input to codeword
- \(\|y - P^T c\|^2 \): encoding error from desired output to codeword

principal directions: best approximation to desired output \(y_n \) during compression (indeed)
Proposed Approach: Principal Label Space Transform

From Compressive Sensing to PLST

1. **Compress**: transform \(\{(x_n, y_n)\} \) to \(\{(x_n, c_n)\} \) by \(c_n = Py_n \) with the \(M \) by \(L \) principal matrix \(P \)

2. **Learn**: get regression function \(r(x) \) from \(x_n \) to \(c_n \)

3. **Decode**: \(g(x) = \text{round}(P^T r(x)) \)

- **Principal directions**: via Principal Component Analysis on \(\{y_n\}_{n=1}^N \)
- **Physical meaning behind \(p_m \)**: key (linear) label correlations

PLST: improving CS by projecting to **key correlations**
Hamming Loss Comparison: Full-BR, PLST & CS

- **PLST** better than **Full-BR**: fewer dimensions, similar (or **better**) performance
- **PLST** better than **CS**: faster, **better** performance
- Similar findings across **data sets** and **regression algorithms**
Semi-summary on PLST

- project to **principal directions** and capture key correlations
- efficient learning (after **label space compression**)
- efficient decoding (**round-based**)
- sound theoretical guarantee + **good practical performance** (better than CS & BR)

expansion (channel coding) instead of compression ("lossy" source coding)? **YES!**
Error-correction Coding

A Novel Framework for Label Space Error-correction

- algorithmic: generalize an popular existing algorithm (RAkEL; Tsoumakas & Vlahavas, 2007) and explain through coding view

- theoretical: link learning performance to error-correcting ability

- practical: explore choices of error-correcting code and obtain better performance than RAkEL (& binary relevance)
Key Idea: Redundant Information

General Error-correcting Codes (ECC)

- commonly used in communication systems
- detect & correct errors after transmitting data over a noisy channel
- encode data \textit{redundantly}

ECC for Machine Learning (successful for multi-class classification)

\begin{align*}
1011 & \rightarrow 1011010 & \text{noisy channel} & 1001010 & \rightarrow 1011 \\
1011 & \rightarrow 1011010 & \text{predictions of } b & 1001010 & \rightarrow 1011 \\
\end{align*}

learn \textit{redundant bits} \implies \textbf{correct} prediction \textit{errors}
Proposed Framework: Multi-labeling with ECC

- **Encode** to add redundant information $\text{enc}(\cdot): \{0, 1\}^L \rightarrow \{0, 1\}^M$
- **Decode** to locate most possible binary vector $\text{dec}(\cdot): \{0, 1\}^M \rightarrow \{0, 1\}^L$
- Transformation to larger multi-label classification with labels b

PLST: $M \ll L$ (works for large L);

MLECC: $M > L$ (works for small L)
Theorem

Let \(g(x) = \text{dec}(\tilde{b}) \) with \(\tilde{b} = h(x) \). Then,

\[
\mathbb{P}[g(x) \neq \mathcal{Y}] \leq \text{const.} \cdot \frac{\text{Hamming loss of } h(x)}{\text{ECC strength} + 1}.
\]

0/1 loss

PLST: principal directions + decent regression

MLECC: which ECC balances strength & difficulty?
Simplest ECC: Repetition Code

encoding: \(y \in \{0, 1\}^L \rightarrow b \in \{0, 1\}^M \)
- **repeat** each bit \(\frac{M}{L} \) times

\[
L = 4, \ M = 28 : \ 1010 \rightarrow 1111111000000111111100000000
\]
- permute the bits randomly

decoding: \(\tilde{b} \in \{0, 1\}^M \rightarrow \tilde{y} \in \{0, 1\}^L \)
- **majority vote** on each original bit

\[
L = 4, \ M = 28: \text{ strength of repetition code (REP) } = 3
\]

RAkEL = REP (code) + a special powerset (channel)
Slightly More Sophisticated: Hamming Code

HAM(7, 4) Code
- \(\{0, 1\}^4 \rightarrow \{0, 1\}^7\) via adding 3 parity bits
 - Physical meaning: label combinations
- \(b_4 = y_0 \oplus y_1 \oplus y_3, b_5 = y_0 \oplus y_2 \oplus y_3, b_6 = y_1 \oplus y_2 \oplus y_3\)
- E.g. \(1011 \rightarrow 1011010\)
- Strength = 1 (weak)

Our Proposed Code: Hamming on Repetition (HAMR)
- \(\{0, 1\}^L \xrightarrow{\text{REP}} \{0, 1\}^{4M/7} \xrightarrow{\text{HAM}(7, 4) \text{ on each 4-bit block}} \{0, 1\}^{7M/7}\)
- \(L = 4, M = 28\): strength of HAMR = 4 better than REP!

HAMR + the special powerset:
improve RAkEL on code strength
Even More Sophisticated Codes

Bose-Chaudhuri-Hocquenghem Code (BCH)

- modern code in **CD players**
- sophisticated extension of Hamming, with **more parity bits**
- codeword length $M = 2^p - 1$ for $p \in \mathbb{N}$
- $L = 4$, $M = 31$, strength of BCH = 5

Low-density Parity-check Code (LDPC)

- modern code for **satellite communication**
- connect ECC and Bayesian learning
- approach the theoretical limit in some cases

let’s compare!
Different ECCs on 3-label Powerset *(scene data set w/ \(L = 6 \))

- learner: special powerset with Random Forests
- REP + special powerset \(\approx \) RAKEL

Comparing to RAKEL (on most of data sets),
- HAMR: **better 0/1 loss**, similar Hamming loss
- BCH: **even better 0/1 loss**, pay for Hamming loss
transformation to **larger multi-label classification**
encode via **error-correcting code** and capture label combinations (parity bits)
effective decoding (**error-correcting**)
simple theoretical guarantee + **good practical performance**
 - to **improve RAkEL**, replace REP by
 - HAMR \rightarrow lower 0/1 loss, similar Hamming loss
 - BCH \rightarrow even lower 0/1 loss, but higher Hamming loss
 - to **improve Binary Relevance**, · · ·
Learnable-Compression Coding

Theoretical Guarantee of PLST Revisited

Linear Transform + Learn + Round-based Decoding

Theorem (Tai and Lin, 2012)

If \(g(x) = \text{round}(P^T r(x)) \),

\[
\frac{1}{L} \sum_{i=1}^{L} |g(x_i) \triangle Y_i| \leq \text{const} \cdot \left(\|r(x) - P\hat{y}\|^2 + \|y - P^T P \hat{y}\|^2 \right)
\]

- \(\|y - P^T c\|^2 \): encoding error, minimized during encoding
- \(\|r(x) - c\|^2 \): prediction error, minimized during learning
- but good encoding may not be easy to learn; vice versa

PLST: minimize two errors separately (sub-optimal) (can we do better by minimizing jointly?)
Learnable-Compression Coding

A Novel Approach for Label Space Compression

- algorithmic: first known algorithm for feature-aware dimension reduction
- theoretical: justification for best learnable projection
- practical: consistently better performance than PLST
The In-Sample Optimization Problem

\[
\min_{r, P} \left(\| r(X) - PY \|^2 + \| Y - P^T PY \|^2 \right)
\]

- start from a well-known tool: linear regression as \(r \)
 \[r(X) = XW \]
- for fixed \(P \): a closed-form solution for learn is
 \[W^* = X^T PY \]

<table>
<thead>
<tr>
<th>optimal (P):</th>
<th>for learn</th>
<th>top eigenvectors of (Y^T (I - XX^T) Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>for compress</td>
<td></td>
<td>top eigenvectors of (Y^T Y)</td>
</tr>
<tr>
<td>for both</td>
<td></td>
<td>top eigenvectors of (Y^T XX^T Y)</td>
</tr>
</tbody>
</table>
Proposed Approach: **Conditional Principal Label Space Transform**

From PLST to CPLST

1. **compress**: transform \(\{(x_n, y_n)\} \) to \(\{(x_n, c_n)\} \) by \(c_n = Py_n \) with the \(M \) by \(L \) **conditional principal** matrix \(P \)

2. **learn**: get **regression** function \(r(x) \) from \(x_n \) to \(c_n \), ideally using **linear regression**

3. **decode**: \(g(x) = \text{round}(P^T r(x)) \)

- **conditional principal directions**: top eigenvectors of \(Y^T XX^+ Y \)
- **physical meaning** behind \(p_m \): key (linear) label correlations that are “easy to learn”

CPLST: project to **key learnable** correlations —can also pair with **kernel regression** (non-linear)
CPLST better than PLST: better performance across all dimensions

similar findings across data sets and regression algorithms
Semi-summary on CPLST

- project to **conditional** principal directions and capture **key learnable** correlations
- more efficient
- sound theoretical guarantee (via PLST) + **good practical performance** (better than PLST)

CPLST: **state-of-the-art** for label space compression
Conclusion

1. **Compression Coding** (Tai & Lin, MLD Workshop 2010; NC Journal 2012)
 - **condense** for efficiency: better (than BR) approach PLST
 - key tool: PCA from Statistics/Signal Processing

2. **Error-correction Coding** (Ferng & Lin, ACML Conference 2011)
 - **expand** for accuracy: better (than REP) code HAMR or BCH
 - key tool: ECC from Information Theory

3. **Learnable-Compression Coding** (Chen & Lin, NIPS Conference 2012)
 - **condense** for efficiency: better (than PLST) approach CPLST
 - key tool: Linear Regression from Statistics (+ PCA)

More......

- beyond standard ECC-decoding (Ferng, NTU Thesis 2012)
- coupling CPLST with other regressor (Chen, NTU Thesis 2012)
- dynamic instead of static coding, combine ML-ECC & PLST/CPLST (....)
Thank you! Questions?