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The Learning Problem
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The Learning Problem What is Machine Learning

From Learning to Machine Learning
learning: acquiring skill

learning:

with experience accumulated from observations

observations learning skill

machine learning: acquiring skill

machine learning:

with experience accumulated/computed from data

data ML skill

What is skill?
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The Learning Problem What is Machine Learning

A More Concrete Definition

⇔

skill
⇔ improve some performance measure (e.g. prediction accuracy)

machine learning: improving some performance measure

machine learning:

with experience computed from data

data ML
improved
performance
measure

An Application in Computational Finance

stock data ML more investment gain

Why use machine learning?
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The Learning Problem What is Machine Learning

Yet Another Application: Tree Recognition

• ‘define’ trees and hand-program: difficult
• learn from data (observations) and

recognize: a 3-year-old can do so
• ‘ML-based tree recognition system’ can be

easier to build than hand-programmed
system

ML: an alternative route to
build complicated systems
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The Learning Problem What is Machine Learning

The Machine Learning Route
ML: an alternative route to build complicated systems

Some Use Scenarios
• when human cannot program the system manually

—navigating on Mars
• when human cannot ‘define the solution’ easily

—speech/visual recognition
• when needing rapid decisions that humans cannot do

—high-frequency trading
• when needing to be user-oriented in a massive scale

—consumer-targeted marketing

Give a computer a fish, you feed it for a day;
teach it how to fish, you feed it for a lifetime. :-)
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The Learning Problem What is Machine Learning

Key Essence of Machine Learning
machine learning: improving some performance measure

machine learning:

with experience computed from data

data ML
improved
performance
measure

1 exists some ‘underlying pattern’ to be learned
—so ‘performance measure’ can be improved

2 but no programmable (easy) definition
—so ‘ML’ is needed

3 somehow there is data about the pattern
—so ML has some ‘inputs’ to learn from

key essence: help decide whether to use ML
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The Learning Problem Applications of Machine Learning

Daily Needs: Food, Clothing, Housing, Transportation
data ML skill

1 Food (Sadilek et al., 2013)

• data: Twitter data (words + location)
• skill: tell food poisoning likeliness of restaurant properly

2 Clothing (Abu-Mostafa, 2012)

• data: sales figures + client surveys
• skill: give good fashion recommendations to clients

3 Housing (Tsanas and Xifara, 2012)

• data: characteristics of buildings and their energy load
• skill: predict energy load of other buildings closely

4 Transportation (Stallkamp et al., 2012)

• data: some traffic sign images and meanings
• skill: recognize traffic signs accurately

ML is everywhere!
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The Learning Problem Applications of Machine Learning

Education
data ML skill

• data: students’ records on quizzes on a Math tutoring system
• skill: predict whether a student can give a correct answer to

another quiz question

A Possible ML Solution
answer correctly ≈ Jrecent strength of student > difficulty of questionK
• give ML 9 million records from 3000 students
• ML determines (reverse-engineers) strength and difficulty

automatically

key part of the world-champion system from
National Taiwan Univ. in KDDCup 2010
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The Learning Problem Applications of Machine Learning

Entertainment: Recommender System (1/2)
data ML skill

• data: how many users have rated some movies
• skill: predict how a user would rate an unrated movie

A Hot Problem
• competition held by Netflix in 2006

• 100,480,507 ratings that 480,189 users gave to 17,770 movies
• 10% improvement = 1 million dollar prize

• similar competition (movies→ songs) held by Yahoo! in KDDCup
2011
• 252,800,275 ratings that 1,000,990 users gave to 624,961 songs

How can machines learn our preferences?

Hsuan-Tien Lin (NTU CSIE) Basics of Machine Learning 9/34



The Learning Problem Applications of Machine Learning

Entertainment: Recommender System (2/2)
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A Possible ML Solution
• pattern:

rating← viewer/movie factors
• learning:

→

known rating
→ learned factors
→ unknown rating prediction

key part of the world-champion (again!)
system from National Taiwan Univ.

in KDDCup 2011
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The Learning Problem Components of Machine Learning

Components of Learning:
Metaphor Using Credit Approval

Applicant Information

age 23 years
gender female

annual salary NTD 1,000,000
year in residence 1 year

year in job 0.5 year
current debt 200,000

unknown pattern to be learned:
‘approve credit card good for bank?’
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The Learning Problem Components of Machine Learning

Formalize the Learning Problem
Basic Notations
• input: x ∈ X (customer application)
• output: y ∈ Y (good/bad after approving credit card)
• unknown pattern to be learned⇔ target function:

f : X → Y (ideal credit approval formula)
• data⇔ training examples: D = {(x1, y1), (x2, y2), · · · , (xN , yN)}

(historical records in bank)
• hypothesis⇔ skill with hopefully good performance:

g : X → Y (‘learned’ formula to be used)

{(xn, yn)} from f ML g
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The Learning Problem Components of Machine Learning

Learning Flow for Credit Approval
unknown target function

f : X → Y
(ideal credit approval formula)

training examples
D : (x1, y1), · · · , (xN , yN)

(historical records in bank)

learning
algorithm
A

final hypothesis
g ≈ f

(‘learned’ formula to be used)

• target f unknown
(i.e. no programmable definition)
• hypothesis g hopefully ≈ f

but possibly different from f
(perfection ‘impossible’ when f unknown)

What does g look like?
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The Learning Problem Components of Machine Learning

The Learning Model

training examples
D : (x1, y1), · · · , (xN , yN)

(historical records in bank)

learning
algorithm
A

final hypothesis
g ≈ f

(‘learned’ formula to be used)

hypothesis set
H

(set of candidate formula)

• assume g ∈ H = {hk}, i.e. approving if
• h1: annual salary > NTD 800,000
• h2: debt > NTD 100,000 (really?)
• h3: year in job ≤ 2 (really?)

• hypothesis set H:
• can contain good or bad hypotheses
• up to A to pick the ‘best’ one as g

learning model = A and H
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The Learning Problem Components of Machine Learning

Practical Definition of Machine Learning
unknown target function

f : X → Y
(ideal credit approval formula)

training examples
D : (x1, y1), · · · , (xN , yN)

(historical records in bank)

learning
algorithm
A

final hypothesis
g ≈ f

(‘learned’ formula to be used)

hypothesis set
H

(set of candidate formula)

machine learning:
use data to compute hypothesis g

that approximates target f
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The Learning Problem Machine Learning and Other Fields

Machine Learning and Data Mining

Machine Learning
use data to compute hypothesis g

that approximates target f

Data Mining
use (huge) data to find property

that is interesting

• if ‘interesting property’ same as ‘hypothesis that approximate
target’
—ML = DM (usually what KDDCup does)
• if ‘interesting property’ related to ‘hypothesis that approximate

target’
—DM can help ML, and vice versa (often, but not always)
• traditional DM also focuses on efficient computation in large

database

difficult to distinguish ML and DM in reality
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The Learning Problem Machine Learning and Other Fields

Machine Learning and Artificial Intelligence

Machine Learning
use data to compute hypothesis g

that approximates target f

Artificial Intelligence
compute something
that shows intelligent behavior

• g ≈ f is something that shows intelligent behavior
—ML can realize AI, among other routes
• e.g. chess playing

• traditional AI: game tree
• ML for AI: ‘learning from board data’

ML is one possible route to realize AI
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The Learning Problem Machine Learning and Other Fields

Machine Learning and Statistics

Machine Learning
use data to compute hypothesis g

that approximates target f

Statistics
use data to make inference

about an unknown process

• g is an inference outcome; f is something unknown
—statistics can be used to achieve ML
• traditional statistics also focus on provable results with math

assumptions, and care less about computation

statistics: many useful tools for ML

Hsuan-Tien Lin (NTU CSIE) Basics of Machine Learning 18/34



The Learning Problem

A Learning Puzzle

yn = −1

yn = +1

g(x) = ?

let’s test your ‘human learning’
with 6 examples :-)
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The Learning Problem

Two Controversial Answers
whatever you say about g(x),

yn = −1

yn = +1

g(x) = ?

yn = −1

yn = +1

g(x) = ?

truth f (x) = +1 because . . .

• symmetry⇔ +1
• (black or white count = 3) or

(black count = 4 and
middle-top black)⇔ +1

truth f (x) = −1 because . . .

• left-top black⇔ -1
• middle column contains at

most 1 black and right-top
white⇔ -1

p

all valid reasons, your adversarial teacher
can always call you ‘didn’t learn’. :-(

Hsuan-Tien Lin (NTU CSIE) Basics of Machine Learning 20/34



The Learning Problem

No Free Lunch Theorem
Without any assumptions on the learning problem on
hand, all learning algorithms perform the same.

No algorithm is better for all
learning problems
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The Learning Problem

Gender Classification Problem

?

Male Female
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The Learning Problem

Gender Classification: Lesson 1

?

Male Female Female Male Male

Female Female Male Female Male
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The Learning Problem

Gender Classification: Lesson 2

Male

Male Female Female Male Male

Female Female

Male

Female Male

Hsuan-Tien Lin (NTU CSIE) Basics of Machine Learning 24/34



The Learning Problem

Gender Classification: Lesson 3

Male

Male

Male Female Female

Male

Male

Female Female Male Female Male
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The Learning Problem

Gender Classification: Lesson 4

?

Male Female Female Male

Male

Female Female Male

Female

Male
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The Learning Problem

Nearest Neighbors
Intuition
• memorize everything
• predict with the closest case

Algorithm
• Training: memorize all examples (picture, label)
• Prediction:

• find K nearest neighbors
• let them vote!
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The Learning Problem

Apple Recognition Problem
• Is this a picture of an apple?
• We want to teach a class of 6 year olds.
• Gather photos from NY Apple Asso. and Google Image.
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The Learning Problem

Our Fruit Class Begins

Teacher: How would you describe an apple? Michael?
Michael: I think apples are circular.
(Class): Apples are circular.
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The Learning Problem

Our Fruit Class Continues

Teacher: Being circular is a good feature for the apples.
However, if you only say circular, you could make
several mistakes. What else can we say for an
apple? Tina?

Tina: It looks like apples are red.
(Class): Apples are somewhat circular and somewhat red.
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The Learning Problem

Our Fruit Class Continues

Teacher: Yes. Many apples are red. However, you could still
make mistakes based on circular and red. Do you
have any other suggestions, Joey?

Joey: Apples could also be green.
(Class): Apples are somewhat circular and somewhat red

and possibly green.
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The Learning Problem

Our Fruit Class Continues

Teacher: Yes. It seems that apples might be circular, red,
green. But you may confuse them with tomatoes or
peaches, right? Any more suggestions, Jessica?

Jessica: Apples have stems at the top.
(Class): Apples are somewhat circular, somewhat red,

possibly green, and may have stems at the top.
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The Learning Problem

Adaptive Boosting
ML and Life
• combine simple rules to approximate complex function

(many heads are better than one)
• emphasize incorrect data for valuable information

(again you can learn by correcting mistakes)

AdaBoost Algorithm

• Input: examples (picture xn, label yn)
N
n=1.

• For t = 1,2, · · · ,T ,
• learn a simple rule ht from emphasized examples
• get the confidence wt of such rule
• emphasize the examples that do not agree with ht .

• Output: weighted vote of the rules
∑T

t=1 wtht(x)
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The Learning Problem

Machine Learning Research
• What can machines learn? (application)

• concrete applications (and data mining):
• abstract setups:

classification, regression, · · ·
• Why can machines learn? (theory)

• theoretical paradigms:
statistical learning, reinforcement learning, interactive learning, · · ·

• generalization guarantees
• How can machines learn? (algorithm)

• faster algorithms
• algorithms with better generalization performance

new opportunities of machine learning keep
coming from new applications
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