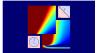
Basics of Machine Learning

from NTU-Coursera Free Mandarin-based Online Course "Machine Learning Foundations" (機器學習基石) &

My Amazon Best-Seller Book "Learning from Data" (全華代理)



Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- What is Machine Learning
- Perceptron Learning Algorithm
- Types of Learning
- Possibility of Learning
- Linear Regression
- Logistic Regression
- Nonlinear Transform
- Overfitting
- Principles of Learning

What is Machine Learning

From Learning to Machine Learning

learning: acquiring skill
with experience accumulated from observations

machine learning: acquiring skill

with experience accumulated/computed from data

What is skill?

A More Concrete Definition

skill

⇔ improve some performance measure (e.g. prediction accuracy)

machine learning: improving some performance measure with experience computed from data

An Application in Computational Finance

stock data — ML — more investment gain

Why use machine learning?

Yet Another Application: Tree Recognition

- · 'define' trees and hand-program: difficult
- learn from data (observations) and recognize: a 3-year-old can do so
- 'ML-based tree recognition system' can be easier to build than hand-programmed system

ML: an alternative route to build complicated systems

The Machine Learning Route

ML: an alternative route to build complicated systems

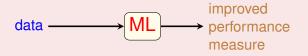
Some Use Scenarios

- when human cannot program the system manually —navigating on Mars
- when human cannot 'define the solution' easily —speech/visual recognition
- when needing rapid decisions that humans cannot do —high-frequency trading
- when needing to be user-oriented in a massive scale
 —consumer-targeted marketing

Give a **computer** a fish, you feed it for a day; teach it how to fish, you feed it for a lifetime. :-)

Key Essence of Machine Learning

machine learning: improving some performance measure with experience computed from data



- exists some 'underlying pattern' to be learned
 so 'performance measure' can be improved
- but no programmable (easy) definition—so 'ML' is needed
- somehow there is data about the patternso ML has some 'inputs' to learn from

key essence: help decide whether to use ML

Entertainment: Recommender System (1/2)

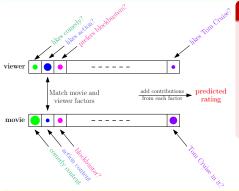
- data: how many users have rated some movies
- skill: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
 - 100,480,507 ratings that 480,189 users gave to 17,770 movies
 - 10% improvement = 1 million dollar prize
- similar competition (movies \rightarrow songs) held by Yahoo! in KDDCup 2011
 - 252,800,275 ratings that 1,000,990 users gave to 624,961 songs

How can machines learn our preferences?

Entertainment: Recommender System (2/2)



A Possible ML Solution

- pattern:
 rating ← viewer/movie factors
- learning: known rating
 - → learned factors
 - → unknown rating prediction

key part of the world-champion (again!) system from National Taiwan Univ. in KDDCup 2011

Components of Learning: Metaphor Using Credit Approval

Applicant Information

age	23 years
gender	female
annual salary	NTD 1,000,000
year in residence	1 year
year in job	0.5 year
current debt	200,000

unknown pattern to be learned:

'approve credit card good for bank?'

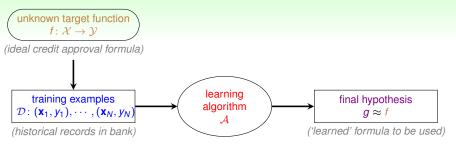
Formalize the Learning Problem

Basic Notations

- input: $\mathbf{x} \in \mathcal{X}$ (customer application)
- output: $y \in \mathcal{Y}$ (good/bad after approving credit card)
- unknown pattern to be learned ⇔ target function:
 f: X → Y (ideal credit approval formula)
- data \Leftrightarrow training examples: $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N)\}$ (historical records in bank)
- hypothesis ⇔ skill with hopefully good performance:
 g: X → Y ('learned' formula to be used)

$$\{(\mathbf{x}_n, y_n)\} \text{ from } f \longrightarrow \boxed{\mathsf{ML}} \longrightarrow g$$

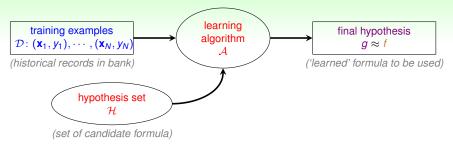
Learning Flow for Credit Approval



- target f unknown
 (i.e. no programmable definition)
- hypothesis g hopefully ≈ f but possibly different from f (perfection 'impossible' when f unknown)

What does g look like?

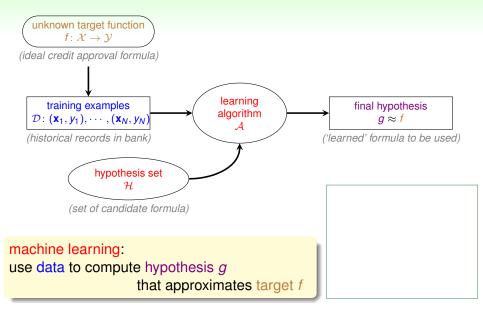
The Learning Model



- assume $g \in \mathcal{H} = \{h_k\}$, i.e. approving if
 - h₁: annual salary > NTD 800,000
 - h₂: debt > NTD 100,000 (really?)
 - h₃: year in job ≤ 2 (really?)
- hypothesis set H:
 - can contain good or bad hypotheses
 - up to A to pick the 'best' one as g

learning model = A and H

Practical Definition of Machine Learning



Machine Learning and Data Mining

Machine Learning

use data to compute hypothesis *g* that approximates target *f*

Data Mining

use (huge) data to find property that is interesting

- if 'interesting property' same as 'hypothesis that approximate target'
 - —ML = DM (usually what KDDCup does)
- if 'interesting property' related to 'hypothesis that approximate target'
 - —DM can help ML, and vice versa (often, but not always)
- traditional DM also focuses on efficient computation in large database

difficult to distinguish ML and DM in reality

Machine Learning and Artificial Intelligence

Machine Learning

use data to compute hypothesis *g* that approximates target *f*

Artificial Intelligence

compute something that shows intelligent behavior

- g ≈ f is something that shows intelligent behavior
 —ML can realize AI, among other routes
- e.g. chess playing
 - traditional AI: game tree
 - ML for AI: 'learning from board data'

ML is one possible route to realize AI

Machine Learning and Statistics

Machine Learning

use data to compute hypothesis *g* that approximates target *f*

Statistics

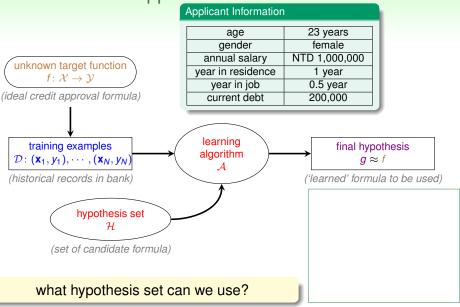
use data to make inference about an unknown process

- g is an inference outcome; f is something unknown
 —statistics can be used to achieve ML
- traditional statistics also focus on provable results with math assumptions, and care less about computation

statistics: many useful tools for ML

Perceptron Learning Algorithm

Credit Approval Problem Revisited



A Simple Hypothesis Set: the 'Perceptron'

23 years
NTD 1,000,000
0.5 year
200,000

• For $\mathbf{x} = (x_1, x_2, \dots, x_d)$ 'features of customer', compute a weighted 'score' and

approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}$$
 deny credit if $\sum_{i=1}^{d} w_i x_i < \text{threshold}$

• \mathcal{Y} : $\{+1(good), -1(bad)\}$, 0 ignored—linear formula $h \in \mathcal{H}$ are

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_i x_i\right) - \operatorname{threshold}\right)$$

called 'perceptron' hypothesis historically

Vector Form of Perceptron Hypothesis

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) - \operatorname{threshold}\right)$$

$$= \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) + \underbrace{\left(-\operatorname{threshold}\right) \cdot \left(+1\right)}_{\mathbf{w}_{0}}\right)$$

$$= \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w}_{i} x_{i}\right)$$

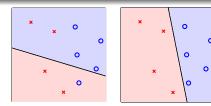
$$= \operatorname{sign}\left(\mathbf{w}^{\mathsf{T}} \mathbf{x}\right)$$

 each 'tall' w represents a hypothesis h & is multiplied with 'tall' x —will use tall versions to simplify notation

what do perceptrons h 'look like'?

Perceptrons in \mathbb{R}^2

$$h(\mathbf{x}) = \text{sign}(w_0 + w_1x_1 + w_2x_2)$$



- customer features \mathbf{x} : points on the plane (or points in \mathbb{R}^d)
- labels y: \circ (+1), \times (-1)
- hypothesis h: lines (or hyperplanes in \mathbb{R}^d)

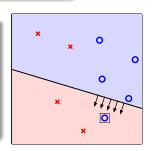
 —positive on one side of a line, negative on the other side
- · different line classifies customers differently

perceptrons ⇔ linear (binary) classifiers

Select g from \mathcal{H}

 $\mathcal{H} = \text{all possible perceptrons}, g = ?$

- want: $g \approx f$ (hard when f unknown)
- almost necessary: $g \approx f$ on \mathcal{D} , ideally $g(\mathbf{x}_n) = f(\mathbf{x}_n) = y_n$
- difficult: \mathcal{H} is of infinite size
- idea: start from some g_0 , and 'correct' its mistakes on \mathcal{D}



will represent g_0 by its weight vector \mathbf{w}_0

Perceptron Learning Algorithm

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

For t = 0, 1, ...

1 find a mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$

$$\mathrm{sign}\left(\mathbf{w}_t^T\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

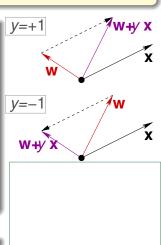
(try to) correct the mistake by

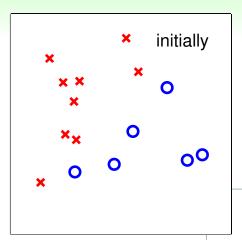
$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

... until no more mistakes return last \mathbf{w} (called \mathbf{w}_{PLA}) as g

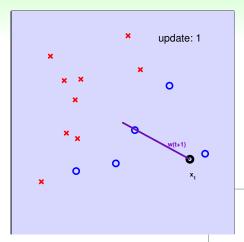
That's it!

—A fault confessed is half redressed. :-)

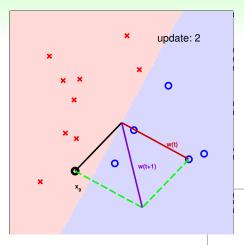




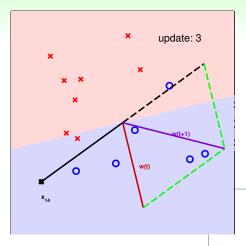
worked like a charm with < 20 lines!!



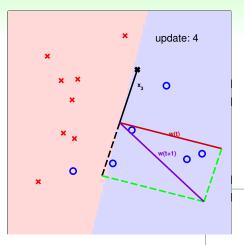
worked like a charm with < 20 lines!!



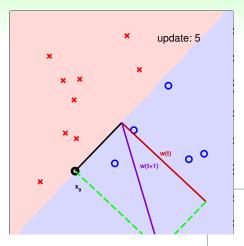
worked like a charm with < 20 lines!!



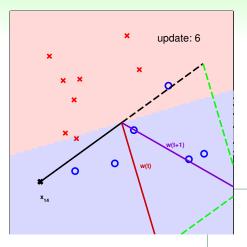
worked like a charm with < 20 lines!!



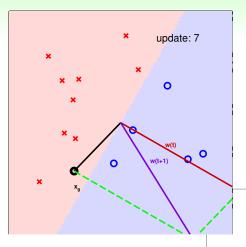
worked like a charm with < 20 lines!!



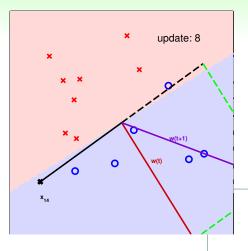
worked like a charm with < 20 lines!!



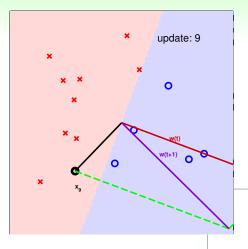
worked like a charm with < 20 lines!!



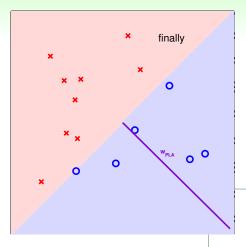
worked like a charm with < 20 lines!!



worked like a charm with < 20 lines!!



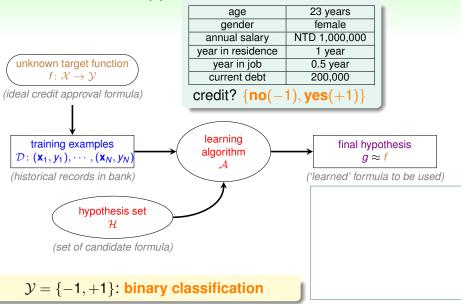
worked like a charm with < 20 lines!!



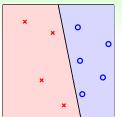
worked like a charm with < 20 lines!!

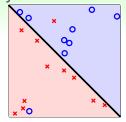
Types of Learning

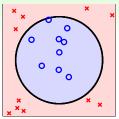
Credit Approval Problem Revisited



More Binary Classification Problems



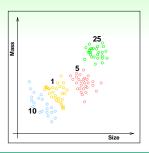




- credit approve/disapprove
- email spam/non-spam
- patient sick/not sick
- ad profitable/not profitable
- answer correct/incorrect (KDDCup 2010)

core and important problem with many tools as building block of other tools

Multiclass Classification: Coin Recognition Problem



- classify US coins (1c, 5c, 10c, 25c) by (size, mass)
- $\mathcal{Y} = \{1c, 5c, 10c, 25c\}$, or $\mathcal{Y} = \{1, 2, \dots, K\}$ (abstractly)
- binary classification: special case with K=2

Other Multiclass Classification Problems

- written digits $\Rightarrow 0, 1, \dots, 9$
- pictures ⇒ apple, orange, strawberry
- emails ⇒ spam, primary, social, promotion, update (Google)

many applications in practice, especially for 'recognition'

Regression: Patient Recovery Prediction Problem

- binary classification: patient features ⇒ sick or not
- multiclass classification: patient features ⇒ which type of cancer
- regression: patient features ⇒ how many days before recovery
- $\mathcal{Y} = \mathbb{R}$ or $\mathcal{Y} = [\text{lower}, \text{upper}] \subset \mathbb{R}$ (bounded regression) —deeply studied in statistics

Other Regression Problems

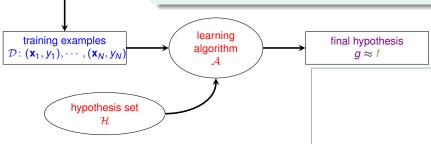
- company data ⇒ stock price
- climate data ⇒ temperature

also core and important with many 'statistical' tools as building block of other tools

Mini Summary

Learning with Different Output Space ${\cal Y}$

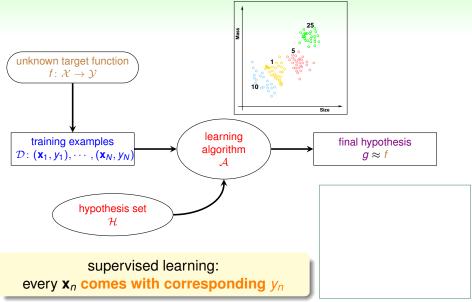
- binary classification: $\mathcal{Y} = \{-1, +1\}$
- multiclass classification: $\mathcal{Y} = \{1, 2, \cdots, K\}$
- regression: $\mathcal{Y} = \mathbb{R}$
- ... and a lot more!!



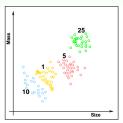
core tools: binary classification and regression

unknown target function $f \colon \mathcal{X} \to \mathcal{Y}$

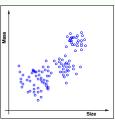
Supervised: Coin Recognition Revisited



Unsupervised: Coin Recognition without y_n



supervised multiclass classification



unsupervised multiclass classification

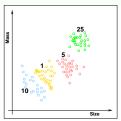
⇔ 'clustering'

Other Clustering Problems

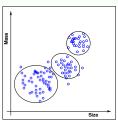
- articles ⇒ topics
- consumer profiles ⇒ consumer groups

clustering: a challenging but useful problem

Unsupervised: Coin Recognition without y_n



supervised multiclass classification



unsupervised multiclass classification

⇔ 'clustering'

Other Clustering Problems

- articles ⇒ topics
- consumer profiles ⇒ consumer groups

clustering: a challenging but useful problem

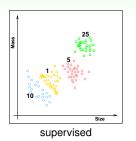
Unsupervised: Learning without y_n

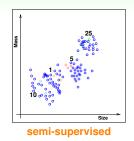
Other Unsupervised Learning Problems

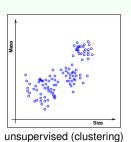
- clustering: {x_n} ⇒ cluster(x)
 (≈ 'unsupervised multiclass classification')
 —i.e. articles ⇒ topics
- density estimation: {x_n} ⇒ density(x)
 (≈ 'unsupervised bounded regression')
 —i.e. traffic reports with location ⇒ dangerous areas
- outlier detection: {x_n} ⇒ unusual(x)
 (≈ extreme 'unsupervised binary classification')
 —i.e. Internet logs ⇒ intrusion alert
- ... and a lot more!!

unsupervised learning: diverse, with possibly very different performance goals

Semi-supervised: Coin Recognition with Some y_n







Other Semi-supervised Learning Problems

- face images with a few labeled ⇒ face identifier (Facebook)
- medicine data with a few labeled ⇒ medicine effect predictor

semi-supervised learning: leverage unlabeled data to avoid 'expensive' labeling

Reinforcement Learning

a 'very different' but natural way of learning

Teach Your Dog: Say 'Sit Down'

The dog pees on the ground.

BAD DOG. THAT'S A VERY WRONG ACTION.

- cannot easily show the dog that $y_n = \text{sit}$ when $\mathbf{x}_n = \text{'sit down'}$
- but can 'punish' to say \tilde{y}_n = pee is wrong

Other Reinforcement Learning Problems Using $(\mathbf{x}, \tilde{\mathbf{y}}, \text{goodness})$

- (customer, ad choice, ad click earning) ⇒ ad system
- (cards, strategy, winning amount) ⇒ black jack agent

reinforcement: learn with 'partial/implicit information' (often sequentially)

Reinforcement Learning

a 'very different' but natural way of learning

Teach Your Dog: Say 'Sit Down'

The dog sits down.

Good Dog. Let me give you some cookies.

- still cannot show $y_n = \text{sit}$ when $\mathbf{x}_n = \text{'sit down'}$
- but can 'reward' to say \tilde{y}_n = sit is good

Other Reinforcement Learning Problems Using $(\mathbf{x}, \tilde{\mathbf{y}}, \text{goodness})$

- (customer, ad choice, ad click earning) ⇒ ad system
- (cards, strategy, winning amount) ⇒ black jack agent

reinforcement: learn with 'partial/implicit information' (often sequentially)

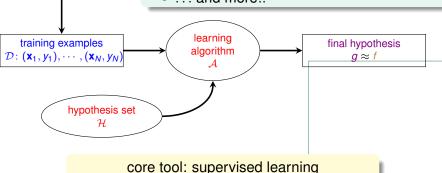
unknown target function

 $f \colon \mathcal{X} \to \mathcal{Y}$

Mini Summary

Learning with Different Data Label y_n

- supervised: all y_n
 - unsupervised: no y_n
 semi-supervised: some y_n
- reinforcement: implicit y_n by goodness(\tilde{y}_n)
- ... and more!!



Possibility of Learning

A Learning Puzzle

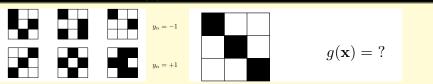
$$y_n = +1$$

$$g(\mathbf{x}) = ?$$

let's test your 'human learning' with 6 examples :-)

Two Controversial Answers

whatever you say about $g(\mathbf{x})$,



truth $f(\mathbf{x}) = +1$ because . . .

- symmetry ⇔ +1
- (black or white count = 3) or (black count = 4 and middle-top black) ⇔ +1

truth $f(\mathbf{x}) = -1$ because . . .

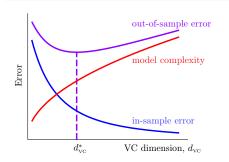
- left-top black ⇔ -1
- middle column contains at most 1 black and right-top white ⇔ -1

all valid reasons, your adversarial teacher can always call you 'didn't learn'. :-(

Theoretical Foundation of Statistical Learning

if training and testing from same distribution, with a high probability,

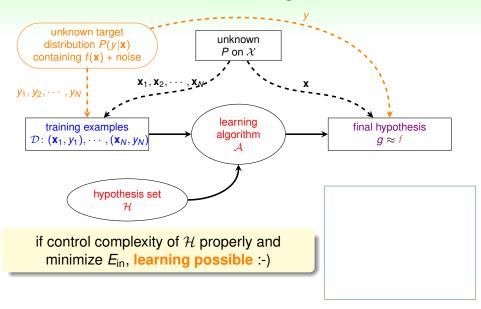
$$\underbrace{E_{\mathrm{out}}(g)}_{\mathrm{test\ error}} \leq \underbrace{E_{\mathrm{in}}(g)}_{\mathrm{training\ error}} + \underbrace{\sqrt{\frac{8}{N}\ln\left(\frac{4(2N)^{\mathsf{olyc}(\mathcal{H})}}{\delta}\right)}}_{\Omega:\mathrm{price\ of\ using\ }\mathcal{H}}$$



- $d_{VC}(\mathcal{H})$: VC dimension of \mathcal{H} \approx # of parameters to describe \mathcal{H}
- d_{VC} ↑: E_{in} ↓ but Ω ↑
- d_{VC} ↓: Ω ↓ but E_{in} ↑
- best d_{VC}^* in the middle

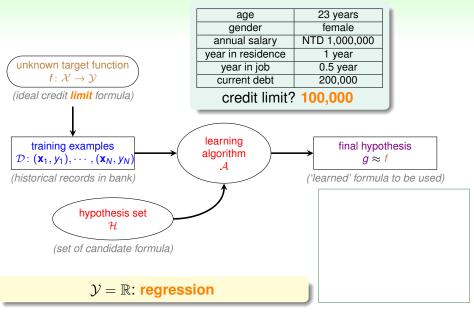
powerful \mathcal{H} not always good!

The New Learning Flow



Linear Regression

Credit Limit Problem



Linear Regression Hypothesis

age	23 years
annual salary	NTD 1,000,000
year in job	0.5 year
current debt	200,000

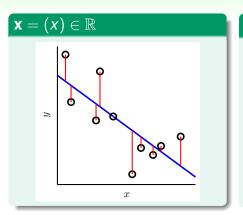
• For $\mathbf{x} = (x_0, x_1, x_2, \dots, x_d)$ 'features of customer', approximate the desired credit limit with a weighted sum:

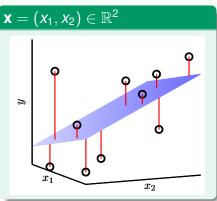
$$y \approx \sum_{i=0}^{d} \mathbf{w}_{i} x_{i}$$

• linear regression hypothesis: $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

 $h(\mathbf{x})$: like perceptron, but without the sign

Illustration of Linear Regression





linear regression: find lines/hyperplanes with small residuals

The Error Measure

popular/historical error measure:

squared error
$$err(\hat{y}, y) = (\hat{y} - y)^2$$

in-sample

$$E_{in}(h\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\underbrace{h(\mathbf{x}_n)}_{\mathbf{w}^T \mathbf{x}_n} - y_n)^2$$

out-of-sample

$$E_{\text{out}}(\mathbf{w}) = \underset{(\mathbf{x}, y) \sim P}{\mathcal{E}} (\mathbf{w}^T \mathbf{x} - y)^2$$

next: how to minimize $E_{in}(\mathbf{w})$?

Matrix Form of $E_{in}(\mathbf{w})$

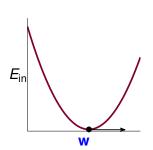
$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}_{n} - y_{n})^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n}^{T} \mathbf{w} - y_{n})^{2}$$

$$= \frac{1}{N} \begin{vmatrix} \mathbf{x}_{1}^{T} \mathbf{w} - y_{1} \\ \mathbf{x}_{2}^{T} \mathbf{w} - y_{2} \\ \dots \\ \mathbf{x}_{N}^{T} \mathbf{w} - y_{N} \end{vmatrix}^{2}$$

$$= \frac{1}{N} \begin{vmatrix} \begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \dots \\ --\mathbf{x}_{N}^{T} - - \end{vmatrix} \mathbf{w} - \begin{bmatrix} y_{1} \\ y_{2} \\ \dots \\ y_{N} \end{bmatrix} \end{vmatrix}^{2}$$

$$= \frac{1}{N} \| \underbrace{\mathbf{x}}_{N \times d+1} \underbrace{\mathbf{w}}_{d+1 \times 1} - \underbrace{\mathbf{y}}_{N \times 1} \|^{2}$$

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$



- E_{in}(w): continuous, differentiable, convex
- necessary condition of 'best' w

$$\nabla \textit{E}_{in}(\textbf{w}) \equiv \begin{bmatrix} \frac{\partial \textit{E}_{in}}{\partial \textit{w}_0}(\textbf{w}) \\ \frac{\partial \textit{E}_{in}}{\partial \textit{w}_1}(\textbf{w}) \\ \vdots \\ \frac{\partial \textit{E}_{in}}{\partial \textit{w}_d}(\textbf{w}) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

—not possible to 'roll down'

task: find $\mathbf{w}_{\mathsf{LIN}}$ such that $\nabla E_{\mathsf{in}}(\mathbf{w}_{\mathsf{LIN}}) = \mathbf{0}$

The Gradient $\nabla E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 = \frac{1}{N} \left(\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2 \mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y} \right)$$

one w only

$$E_{\rm in}(w) = \frac{1}{N} \left(aw^2 - 2bw + c \right)$$

 $\nabla E_{\rm in}(\mathbf{w}) = \frac{1}{N} \left(2 \mathbf{a} \mathbf{w} - 2 \mathbf{b} \right)$

simple! :-)

vector w

$$E_{\rm in}(\mathbf{w}) = \frac{1}{N} \left(\mathbf{w}^T \mathbf{A} \mathbf{w} - 2 \mathbf{w}^T \mathbf{b} + c \right)$$

$$\nabla E_{\text{in}}(\mathbf{w}) = \frac{1}{N} (2\mathbf{A}\mathbf{w} - 2\mathbf{b})$$

similar (derived by definition)

$$\nabla E_{\mathsf{in}}(\mathbf{w}) = \frac{2}{N} \left(\mathbf{X}^\mathsf{T} \mathbf{X} \mathbf{w} - \mathbf{X}^\mathsf{T} \mathbf{y} \right)$$

Optimal Linear Regression Weights

task: find
$$\mathbf{w}_{LIN}$$
 such that $\frac{2}{N} \left(\mathbf{X}^T \mathbf{X} \mathbf{w} - \mathbf{X}^T \mathbf{y} \right) = \nabla E_{in}(\mathbf{w}) = \mathbf{0}$

invertible X^TX

easy! unique solution

$$\mathbf{w}_{\text{LIN}} = \underbrace{\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}}_{\text{pseudo-inverse }\mathbf{x}^{\dagger}} \mathbf{y}$$

• often the case because $N \gg d + 1$

singular X^TX

- many optimal solutions
- · one of the solutions

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

by defining X^{\dagger} in other ways

practical suggestion:

 $\label{eq:well-implemented} \text{use } \frac{\text{well-implemented}}{\text{instead of } \left(\mathbf{X}^T\mathbf{X}\right)^{-1}\mathbf{X}^T} \\ \text{for numerical stability when } \frac{1}{\mathbf{almost-singular}} \\$

Linear Regression Algorithm

1 from \mathcal{D} , construct input matrix \mathbf{X} and output vector \mathbf{y} by

$$\mathbf{X} = \underbrace{\begin{bmatrix} --\mathbf{x}_{1}^{T} - - \\ --\mathbf{x}_{2}^{T} - - \\ \cdots \\ --\mathbf{x}_{N}^{T} - - \end{bmatrix}}_{N \times (d+1)} \quad \mathbf{y} = \underbrace{\begin{bmatrix} y_{1} \\ y_{2} \\ \cdots \\ y_{N} \end{bmatrix}}_{N \times 1}$$

- 2 calculate pseudo-inverse X^{\dagger} $(d+1)\times N$
- 3 return $\underbrace{\mathbf{w}_{LIN}}_{(d+1)\times 1} = \mathbf{X}^{\dagger}\mathbf{y}$

simple and efficient with good † routine

Is Linear Regression a 'Learning Algorithm'?

$$\mathbf{w}_{\mathsf{LIN}} = \mathbf{X}^{\dagger} \mathbf{y}$$

No!

- analytic (closed-form) solution, 'instantaneous'
- not improving E_{in} nor E_{out} iteratively

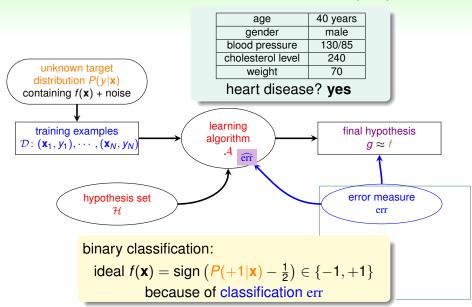
Yes!

- good E_{in}?yes, optimal!
- good E_{out}?
 yes, finite d_{VC} like perceptrons
- improving iteratively?
 somewhat, within an iterative pseudo-inverse routine

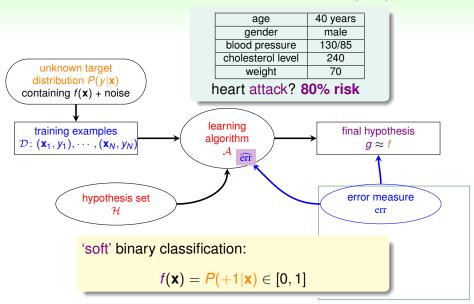
if $E_{out}(\mathbf{w}_{LIN})$ is good, **learning 'happened'!**

Logistic Regression

Heart Attack Prediction Problem (1/2)



Heart Attack Prediction Problem (2/2)



Soft Binary Classification

target function
$$f(\mathbf{x}) = P(+1|\mathbf{x}) \in [0,1]$$

ideal (noiseless) data

$$\begin{pmatrix} \mathbf{x}_{1}, y'_{1} &= 0.9 &= P(+1|\mathbf{x}_{1}) \\ (\mathbf{x}_{2}, y'_{2} &= 0.2 &= P(+1|\mathbf{x}_{2}) \\ \vdots \\ (\mathbf{x}_{N}, y'_{N} &= 0.6 &= P(+1|\mathbf{x}_{N}) \end{pmatrix}$$

$$(\mathbf{x}_N, y_N') = 0.6 = P(+1|\mathbf{x}_N)$$

actual (noisy) data

same data as hard binary classification, different target function

Soft Binary Classification

target function
$$f(\mathbf{x}) = P(+1|\mathbf{x}) \in [0,1]$$

ideal (noiseless) data

$$\begin{pmatrix} \mathbf{x}_{1}, y'_{1} &= 0.9 &= P(+1|\mathbf{x}_{1}) \\ (\mathbf{x}_{2}, y'_{2} &= 0.2 &= P(+1|\mathbf{x}_{2}) \end{pmatrix}$$

$$\vdots$$

$$\begin{pmatrix} \mathbf{x}_{N}, y'_{N} &= 0.6 &= P(+1|\mathbf{x}_{N}) \end{pmatrix}$$

actual (noisy) data

$$\begin{pmatrix} \mathbf{x}_{1}, y'_{1} &= 1 &= \left[\circ \stackrel{?}{\sim} P(y|\mathbf{x}_{1}) \right] \\ \left(\mathbf{x}_{2}, y'_{2} &= 0 &= \left[\circ \stackrel{?}{\sim} P(y|\mathbf{x}_{2}) \right] \right) \\ &\vdots \\ \left(\mathbf{x}_{N}, y'_{N} &= 0 &= \left[\circ \stackrel{?}{\sim} P(y|\mathbf{x}_{N}) \right] \right)$$

same data as hard binary classification, different target function

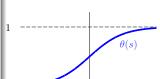
Logistic Hypothesis

age	40 years
gender	male
blood pressure	130/85
cholesterol level	240

 For x = (x₀, x₁, x₂, ···, x_d) 'features of patient', calculate a weighted 'risk score':

$$s = \sum_{i=0}^{d} w_i x_i$$

• convert the score to estimated probability by logistic function $\theta(s)$



logistic hypothesis:

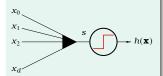
$$h(\mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$$

Three Linear Models

linear scoring function: $s = \mathbf{w}^T \mathbf{x}$

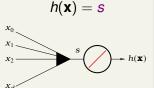
linear classification

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{s})$$



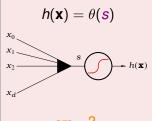
plausible err = 0/1 (small flipping noise)

linear regression



friendly err = squared (easy to minimize)

logistic regression



err = ?

how to define $E_{in}(\mathbf{w})$ for logistic regression?

Likelihood

target function
$$f(\mathbf{x}) = P(+1|\mathbf{x})$$

$$\Leftrightarrow$$

$$P(y|\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1 \\ 1 - f(\mathbf{x}) & \text{for } y = -1 \end{cases}$$

consider
$$\mathcal{D} = \{(\mathbf{x}_1, \circ), (\mathbf{x}_2, \times), \dots, (\mathbf{x}_N, \times)\}$$

probability that f generates \mathcal{D}

$$P(\mathbf{x}_1)P(\circ|\mathbf{x}_1) \times P(\mathbf{x}_2)P(\times|\mathbf{x}_2) \times \dots$$

 $P(\mathbf{x}_N)P(\times|\mathbf{x}_N)$

likelihood that h generates D

$$P(\mathbf{x}_1)h(\mathbf{x}_1) \times P(\mathbf{x}_2)(1 - h(\mathbf{x}_2)) \times \dots P(\mathbf{x}_N)(1 - h(\mathbf{x}_N))$$

- if *h* ≈ *f*,
 then likelihood(*h*) ≈ probability using *f*
- probability using f usually large

Likelihood

target function
$$f(\mathbf{x}) = P(+1|\mathbf{x})$$

$$\Leftrightarrow$$

$$P(y|\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } y = +1 \\ 1 - f(\mathbf{x}) & \text{for } y = -1 \end{cases}$$

consider
$$\mathcal{D} = \{(\mathbf{x}_1, \circ), (\mathbf{x}_2, \times), \dots, (\mathbf{x}_N, \times)\}$$

probability that f generates \mathcal{D}

$$P(\mathbf{x}_1)f(\mathbf{x}_1) \times P(\mathbf{x}_2)(1-f(\mathbf{x}_2)) \times \dots$$

$$P(\mathbf{x}_N)(1-f(\mathbf{x}_N))$$

likelihood that h generates \mathcal{D}

$$P(\mathbf{x}_1)h(\mathbf{x}_1) \times P(\mathbf{x}_2)(1-h(\mathbf{x}_2)) \times \dots P(\mathbf{x}_N)(1-h(\mathbf{x}_N))$$

- if *h* ≈ *f*,
 then likelihood(*h*) ≈ probability using *f*
- probability using f usually large

Likelihood of Logistic Hypothesis

likelihood(h) \approx (probability using f) \approx large

$$g = \underset{h}{\operatorname{argmax}} \operatorname{likelihood}(h)$$

when logistic:
$$h(\mathbf{x}) = \theta(\mathbf{w}^\mathsf{T} \mathbf{x})$$

$$1 - h(\mathbf{x}) = h(-\mathbf{x})$$

$$\mathsf{likelihood}(\textcolor{red}{h}) = P(\mathbf{x}_1)\textcolor{red}{h}(\mathbf{x}_1) \times P(\mathbf{x}_2)(1-\textcolor{red}{h}(\mathbf{x}_2)) \times \ldots P(\mathbf{x}_N)(1-\textcolor{red}{h}(\mathbf{x}_N))$$

likelihood(logistic
$$h$$
) $\propto \prod_{n=1}^{N} h(y_n \mathbf{x}_n)$

Likelihood of Logistic Hypothesis

likelihood(h) \approx (probability using f) \approx large

$$g = \underset{h}{\operatorname{argmax}} \operatorname{likelihood}(h)$$

when logistic:
$$h(\mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x})$$

$$1 - h(\mathbf{x}) = h(-\mathbf{x})$$

likelihood(
$$h$$
) = $P(\mathbf{x}_1)h(+\mathbf{x}_1) \times P(\mathbf{x}_2)h(-\mathbf{x}_2) \times \dots P(\mathbf{x}_N)h(-\mathbf{x}_N)$

likelihood(logistic
$$h$$
) $\propto \prod_{n=1}^{N} h(y_n \mathbf{x}_n)$

$$\max_{h} \quad \text{likelihood(logistic } h) \propto \prod_{n=1}^{N} h(y_n \mathbf{x}_n)$$

$$\max_{\mathbf{w}} \quad likelihood(\mathbf{w}) \propto \prod_{n=1}^{N} \theta \left(y_n \mathbf{w}^T \mathbf{x}_n \right)$$

$$\max_{\mathbf{w}} \quad \ln \prod_{n=1}^{N} \theta \left(y_{n} \mathbf{w}^{T} \mathbf{x}_{n} \right)$$

$$\min_{\mathbf{w}} \quad \frac{1}{N} \sum_{n=1}^{N} - \ln \theta \left(y_n \mathbf{w}^T \mathbf{x}_n \right)$$

$$\theta(s) = \frac{1}{1 + \exp(-s)} : \min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \ln\left(1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n)\right)$$

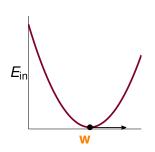
$$\implies \min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \exp(\mathbf{w}, \mathbf{x}_n, y_n)$$

$$E_{\text{in}}(\mathbf{w})$$

$$err(\mathbf{w}, \mathbf{x}, y) = ln(1 + exp(-y\mathbf{w}\mathbf{x}))$$
: **cross-entropy error**

Minimizing $E_{in}(\mathbf{w})$

$$\min_{\mathbf{w}} \quad E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n) \right)$$



- E_{in}(w): continuous, differentiable, twice-differentiable, convex
- how to minimize? locate valley

want
$$\nabla E_{in}(\mathbf{w}) = \mathbf{0}$$

first: derive $\nabla E_{in}(\mathbf{w})$

The Gradient $\nabla E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\underbrace{1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n)}_{\square} \right)$$

$$\frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_{i}} = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\partial \ln(\square)}{\partial \square} \right) \left(\frac{\partial (1 + \exp(\bigcirc))}{\partial \bigcirc} \right) \left(\frac{\partial -y_{n} \mathbf{w}^{T} \mathbf{x}_{n}}{\partial w_{i}} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\exp(\bigcirc)}{1 + \exp(\bigcirc)} \right) \left(-y_{n} \mathbf{x}_{n,i} \right) = \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} \mathbf{x}_{n,i} \right)$$

$$\nabla E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}^T \mathbf{x}_n \right) \left(-y_n \mathbf{x}_n \right)$$

The Gradient $\nabla E_{in}(\mathbf{w})$

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(\underbrace{1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n)}_{\square} \right)$$

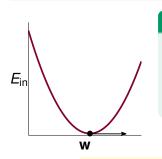
$$\frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_{i}} = \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\partial \ln(\square)}{\partial \square} \right) \left(\frac{\partial (1 + \exp(\bigcirc))}{\partial \bigcirc} \right) \left(\frac{\partial -y_{n} \mathbf{w}^{T} \mathbf{x}_{n}}{\partial w_{i}} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \left(\frac{1}{\square} \right) \left(\exp(\bigcirc) \right) \left(-y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \left(\frac{\exp(\bigcirc)}{1 + \exp(\bigcirc)} \right) \left(-y_{n} x_{n,i} \right) = \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left(-y_{n} x_{n,i} \right)$$

$$\nabla E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}^T \mathbf{x}_n \right) \left(-y_n \mathbf{x}_n \right)$$

Minimizing $E_{in}(\mathbf{w})$

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left(1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n) \right)$$

$$\text{want } \nabla E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}^T \mathbf{x}_n \right) \left(-y_n \mathbf{x}_n \right) = \mathbf{0}$$



scaled θ -weighted sum of $-y_0 \mathbf{x}_0$

- all $\theta(\cdot) = 0$: only if $y_n \mathbf{w}^T \mathbf{x}_n \gg 0$ —linear separable \mathcal{D}
- weighted sum = 0: non-linear equation of w

closed-form solution? no :-(

PLA Revisited: Iterative Optimization

PLA: start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

For t = 0, 1, ...

1 find a mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$

$$sign\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

(try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

when stop, return last w as g

PLA Revisited: Iterative Optimization

PLA: start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

For t = 0, 1, ...

1) find a mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$

$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

2 (try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

 \bullet (equivalently) pick some n, and update \mathbf{w}_t by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \left[\operatorname{sign} \left(\mathbf{w}_t^\mathsf{T} \mathbf{x}_n \right) \neq y_n \right] y_n \mathbf{x}_n$$

when stop, return last w as q

PLA Revisited: Iterative Optimization

PLA: start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

For t = 0, 1, ...

 \bigcirc (equivalently) pick some n, and update \mathbf{w}_t by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \underbrace{\mathbf{1}}_{\eta} \cdot \underbrace{\left(\left[\operatorname{sign}\left(\mathbf{w}_t^\mathsf{T} \mathbf{x}_n \right) \neq y_n \right] \cdot y_n \mathbf{x}_n \right)}_{\mathbf{v}}$$

when stop, return last \mathbf{w} as g

choice of (η, \mathbf{v}) and stopping condition defines iterative optimization approach

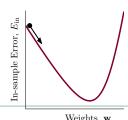
Iterative Optimization

For t = 0, 1, ...

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \mathbf{v}$$

when stop, return last w as g

- PLA: v comes from mistake correction
- smooth $E_{in}(\mathbf{w})$ for logistic regression: choose v to get the ball roll 'downhill'?
 - direction v: (assumed) of unit length
 - step size η: (assumed) positive



Weights, w

a greedy approach for some given $\eta > 0$:

$$\min_{\|\mathbf{v}\|=1} E_{\text{in}}(\underbrace{\mathbf{w}_t + \frac{\eta \mathbf{v}}{\mathbf{w}_{t+1}}})$$

Linear Approximation

a greedy approach for some given $\eta > 0$:

$$\min_{\|\mathbf{v}\|=1} \quad E_{in}(\mathbf{w}_t + \frac{\eta \mathbf{v}}{\mathbf{v}})$$

- still non-linear optimization, now with constraints
 —not any easier than min_w E_{in}(w)
- · local approximation by linear formula makes problem easier

$$E_{\mathsf{in}}(\mathbf{w}_t + \mathbf{\eta v}) \approx E_{\mathsf{in}}(\mathbf{w}_t) + \mathbf{\eta v}^\mathsf{T} \nabla E_{\mathsf{in}}(\mathbf{w}_t)$$

if η really small (Taylor expansion)

an approximate greedy approach for some given small η :

$$\min_{\|\mathbf{v}\|=1} \underbrace{E_{\text{in}}(\mathbf{w}_t)}_{\text{known}} + \underbrace{\eta}_{\text{given positive}} \mathbf{v}^T \underbrace{\nabla E_{\text{in}}(\mathbf{w}_t)}_{\text{known}}$$

Gradient Descent

an approximate greedy approach for some given small η :

$$\min_{\|\mathbf{v}\|=1} \quad \underbrace{E_{\text{in}}(\mathbf{w}_t)}_{\text{known}} + \underbrace{\eta}_{\text{given positive}} \mathbf{v}^T \underbrace{\nabla E_{\text{in}}(\mathbf{w}_t)}_{\text{known}}$$

• optimal **v**: opposite direction of $\nabla E_{in}(\mathbf{w}_t)$

$$\mathbf{v} \propto -\nabla E_{\mathsf{in}}(\mathbf{w}_t)$$

• fixed learning-rate gradient descent: for small η , $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \nabla E_{\text{in}}(\mathbf{w}_t)$

gradient descent: a simple & popular optimization tool

Putting Everything Together

Logistic Regression Algorithm

initialize wo

For $t = 0, 1, \cdots$

1 compute

$$\nabla E_{\text{in}}(\mathbf{w}_t) = \frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}_t^T \mathbf{x}_n \right) \left(-y_n \mathbf{x}_n \right)$$

2 update by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - \eta \nabla \mathbf{\mathcal{E}}_{in}(\mathbf{w}_t)$$

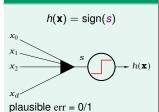
...until $\nabla E_{in}(\mathbf{w}_{t+1}) = 0$ or enough iterations return last \mathbf{w}_{t+1} as g

can use more sophisticated tools to speed up

Linear Models Revisited

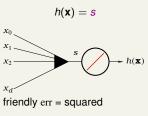
linear scoring function: $s = \mathbf{w}^T \mathbf{x}$

linear classification



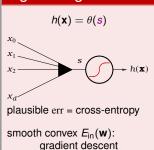
discrete $E_{in}(\mathbf{w})$: solvable in special case

linear regression



quadratic convex $E_{in}(\mathbf{w})$: closed-form solution

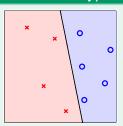
logistic regression



Nonlinear Transform

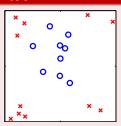
Linear Hypotheses

up to now: linear hypotheses



- visually: 'line'-like boundary
- mathematically: linear scores $s = \mathbf{w}^T \mathbf{x}$

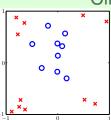
but limited ...

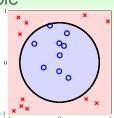


- theoretically: d_{VC} under control :-)
- practically: on some \mathcal{D} , large E_{in} for every line :-(

how to break the limit of linear hypotheses

Circular Separable





- \mathcal{D} not linear separable
- but circular separable by a circle of radius $\sqrt{0.6}$ centered at origin:

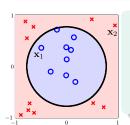
$$h_{\text{SEP}}(\mathbf{x}) = \text{sign}\left(-x_1^2 - x_2^2 + 0.6\right)$$

re-derive Circular-PLA, Circular-Regression, blahblah . . . all over again? :-)

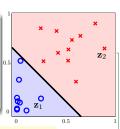
Circular Separable and Linear Separable

$$h(\mathbf{x}) = \operatorname{sign}\left(\underbrace{\begin{array}{ccc} 0.6 \\ \tilde{w}_0 \end{array}} \cdot \underbrace{\begin{array}{ccc} 1 \\ \tilde{w}_1 \end{array}} + \underbrace{\begin{pmatrix} -1 \\ \tilde{w}_1 \end{array}} \cdot \underbrace{\begin{array}{ccc} \chi_1^2 \\ \tilde{z}_1 \end{array}} + \underbrace{\begin{pmatrix} -1 \\ \tilde{w}_2 \end{array}} \cdot \underbrace{\begin{array}{ccc} \chi_2^2 \\ \tilde{z}_2 \end{array}} \right)$$

$$= \operatorname{sign}\left(\tilde{\mathbf{w}}^T \mathbf{z}\right)$$



- $\{(\mathbf{x}_n, y_n)\}$ circular separable $\Rightarrow \{(\mathbf{z}_n, y_n)\}$ linear separable
- $\mathbf{x} \in \mathcal{X} \stackrel{\Phi}{\longmapsto} \mathbf{z} \in \mathcal{Z}$: (nonlinear) feature transform Φ



circular separable in $\mathcal{X} \Longrightarrow \text{linear}$ separable in \mathcal{Z} vice versa?

Linear Hypotheses in Z-Space

$$(z_0, z_1, z_2) = \mathbf{z} = \mathbf{\Phi}(\mathbf{x}) = (1, x_1^2, x_2^2)$$

$$h(\mathbf{x}) = \tilde{h}(\mathbf{z}) = \operatorname{sign}\left(\tilde{\mathbf{w}}^T \mathbf{\Phi}(\mathbf{x})\right) = \operatorname{sign}\left(\tilde{\mathbf{w}}_0 + \tilde{\mathbf{w}}_1 x_1^2 + \tilde{\mathbf{w}}_2 x_2^2\right)$$

$\tilde{\mathbf{W}} = (\tilde{\mathbf{W}}_0, \tilde{\mathbf{W}}_1, \tilde{\mathbf{W}}_2)$

- (0.6, −1, −1): circle (∘ inside)
- (-0.6, +1, +1): circle (o outside)
- (0.6, -1, -2): ellipse
- (0.6, −1, +2): hyperbola
- (0.6, +1, +2): **constant** ∘ :-)

lines in \mathcal{Z} -space

 \iff special quadratic curves in \mathcal{X} -space

General Quadratic Hypothesis Set

a 'bigger'
$$\mathcal{Z}\text{-space}$$
 with $\Phi_2(\boldsymbol{x})=(1,x_1,x_2,x_1^2,x_1x_2,x_2^2)$

perceptrons in \mathcal{Z} -space \iff quadratic hypotheses in \mathcal{X} -space

$$\mathcal{H}_{\Phi_2} = \left\{ h(\mathbf{x}) \colon h(\mathbf{x}) = \tilde{h}(\Phi_2(\mathbf{x})) \text{ for some linear } \tilde{h} \text{ on } \mathcal{Z} \right\}$$

• can implement all possible quadratic curve boundaries: circle, ellipse, rotated ellipse, hyperbola, parabola, ...

ellipse
$$2(x_1 + x_2 - 3)^2 + (x_1 - x_2 - 4)^2 = 1$$

$$\leftarrow \tilde{\mathbf{w}}^{T} = [33, -20, -4, 3, 2, 3]$$

include lines and constants as degenerate cases

next: **learn** a good quadratic hypothesis *g*

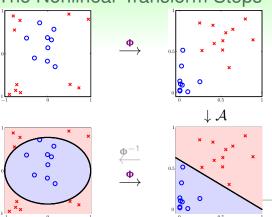
Good Quadratic Hypothesis

- want: get good perceptron in Z-space
- known: get **good perceptron** in \mathcal{X} -space with data $\{(\mathbf{x}_n, y_n)\}$

todo: get good perceptron in \mathcal{Z} -space with data $\{(\mathbf{z}_n = \mathbf{\Phi}_2(\mathbf{x}_n), y_n)\}$

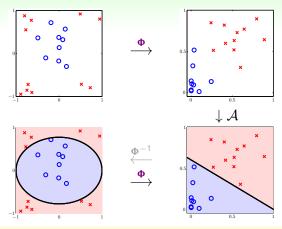
Nonlinear Transform

The Nonlinear Transform Steps



- **1** transform original data $\{(\mathbf{x}_n, y_n)\}$ to $\{(\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n), y_n)\}$ by $\mathbf{\Phi}$
- 2 get a good perceptron $\tilde{\mathbf{w}}$ using $\{(\mathbf{z}_n, y_n)\}$ and your favorite linear algorithm \mathcal{A}
- 3 return $g(\mathbf{x}) = \operatorname{sign}(\tilde{\mathbf{w}}^T \mathbf{\Phi}(\mathbf{x}))$

Nonlinear Model via Nonlinear Φ + Linear Models



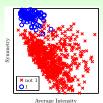
two choices:

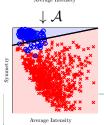
- feature transform
- linear model A, not just binary classification

Pandora's box :-):

can now freely do quadratic PLA, quadratic regression, cubic regression, ..., polynomial regression

Feature Transform •





not new, not just polynomial:

raw (pixels)

concrete (intensity, symmetry)

the force, too good to be true? :-)

Computation/Storage Price

$$Q$$
-th order polynomial transform: $\mathbf{\Phi}_Q(\mathbf{x}) = \begin{pmatrix} & 1, & & & \\ & x_1, x_2, \dots, x_d, & & \\ & x_1^2, x_1 x_2, \dots, x_d^2, & & \\ & & \dots, & & \\ & & x_1^Q, x_1^{Q-1} x_2, \dots, x_d^Q \end{pmatrix}$

$$\underbrace{1}_{\widetilde{W}_0} + \underbrace{\widetilde{d}}_{\text{others}}$$
 dimensions

= # ways of \leq Q-combination from d kinds with repetitions

$$= \binom{Q+d}{Q} = \binom{Q+d}{d} = O(Q^d)$$

= efforts needed for computing/storing $\mathbf{z} = \mathbf{\Phi}_{O}(\mathbf{x})$ and $\tilde{\mathbf{w}}$

 $Q \text{ large} \Longrightarrow \frac{\text{difficult to compute/store}}{}$

Model Complexity Price

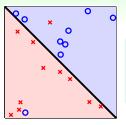
$$Q$$
-th order polynomial transform: $\Phi_Q(\mathbf{x}) = \begin{pmatrix} & 1, & & & \\ & x_1, x_2, \dots, x_d, & & & \\ & x_1^2, x_1 x_2, \dots, x_d^2, & & & \\ & & \dots, & & & \\ & & x_1^Q, x_1^{Q-1} x_2, \dots, x_d^Q \end{pmatrix}$

$$\underbrace{\frac{1}{\tilde{w}_0}} + \underbrace{\tilde{d}}_{\text{others}} \text{ dimensions} = O(Q^d)$$

• number of free parameters $\tilde{w}_i = \tilde{d} + 1 \approx d_{VC}(\mathcal{H}_{\Phi_O})$

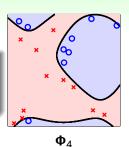
$$Q \text{ large} \Longrightarrow \text{large } d_{VC}$$

Generalization Issue



which one do you prefer? :-)

- Φ₁ 'visually' preferred
- Φ_4 : $E_{in}(g) = 0$ but overkill



 Φ_1 (original \mathbf{x})

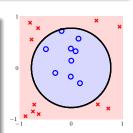
how to pick Q? visually, maybe?

Danger of Visual Choices

first of all, can you really 'visualize' when $\mathcal{X} = \mathbb{R}^{10}$? (well, I can't :-))

Visualize $\mathcal{X} = \mathbb{R}^2$

- full Φ_2 : $\mathbf{z} = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2), d_{VC} = 6$
- or $\mathbf{z} = (1, x_1^2, x_2^2), d_{VC} = 3$, after visualizing?
- or better $\mathbf{z} = (1, x_1^2 + x_2^2)$, $d_{VC} = 2$?
- or even better $\mathbf{z} = (\text{sign}(0.6 x_1^2 x_2^2))$?
- —careful about your brain's 'model complexity'



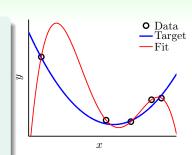
for VC-safety, Φ shall be decided without 'peeking' data

Overfitting

Bad Generalization

- regression for $x \in \mathbb{R}$ with N = 5 examples
- target f(x) = 2nd order polynomial
- label $y_n = f(x_n) + \text{very small noise}$
- linear regression in Z-space +
 Φ = 4th order polynomial
- unique solution passing all examples
 ⇒ E_{in}(g) = 0
- $E_{\text{out}}(g)$ huge

bad generalization: low E_{in} , high E_{out}



Bad Generalization and Overfitting

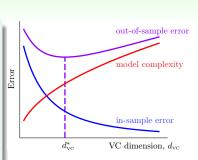
- take $d_{VC} = 1126$ for learning: bad generalization — $(E_{Out} - E_{in})$ large
- switch from $d_{VC} = d_{VC}^*$ to $d_{VC} = 1126$: **overfitting**

$$-E_{in} \downarrow$$
, $E_{out} ↑$

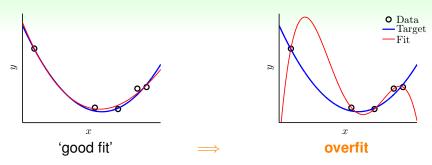
• switch from $d_{VC} = d_{VC}^*$ to $d_{VC} = 1$: underfitting

$$-E_{in}\uparrow$$
, $E_{out}\uparrow$

bad generalization: low E_{in} , high E_{out} ; overfitting: lower E_{in} , higher E_{out}



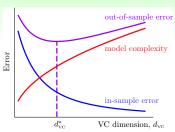
Cause of Overfitting: A Driving Analogy



learning	driving
overfit	commit a car accident
use excessive d_{VC}	'drive too fast'
noise	bumpy road
limited data size N	limited observations about road condition

what shall we do?

Linear Model First



- tempting sin: use \mathcal{H}_{1126} , low $E_{in}(g_{1126})$ to fool your boss —really? :-(a dangerous path of no return
- safe route: \mathcal{H}_1 first
 - if $E_{in}(g_1)$ good enough, live happily thereafter :-)
 - otherwise, move right of the curve with nothing lost except 'wasted' computation

linear model first: simple, efficient, safe, and workable!

Driving Analogy Revisited

learning	driving
overfit	commit a car accident
use excessive d_{VC}	'drive too fast'
noise	bumpy road
limited data size N	limited observations about road condition
start from simple model	drive slowly
regularization	put the brakes
data cleaning/pruning	use more accurate road information
data hinting	exploit more road information
validation	monitor the dashboard

all very **practical** techniques to combat overfitting

Validation Set \mathcal{D}_{val}

$$E_{\text{in}}(h) \qquad \qquad E_{\text{val}}(h)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\downarrow \mathcal{D} \qquad \rightarrow \qquad \underbrace{\mathcal{D}_{\text{train}}}_{\text{size } N-K} \qquad \cup \qquad \underbrace{\mathcal{D}_{\text{val}}}_{\text{size } K}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$g_m = \mathcal{A}_m(\mathcal{D}) \qquad g_m^- = \mathcal{A}_m(\mathcal{D}_{\text{train}})$$

- $\mathcal{D}_{val} \subset \mathcal{D}$: called **validation set**—'on-hand' simulation of test set
- to connect E_{val} with E_{out} : $\mathcal{D}_{\text{val}} \stackrel{\textit{iid}}{\sim} P(\mathbf{x}, \mathbf{y}) \iff \text{select } K \text{ examples from } \mathcal{D} \text{ at random}$
- to make sure \mathcal{D}_{val} 'clean': feed only $\mathcal{D}_{\text{train}}$ to \mathcal{A}_m for model selection

$$E_{\mathsf{out}}({\color{red} g_{m}^{-}}) \leq E_{\mathsf{val}}({\color{red} g_{m}^{-}}) + O\left(\sqrt{{\color{red} \log M \over K}}
ight)$$

Model Selection by Best E_{val}

$$m^* = \underset{1 \le m \le M}{\operatorname{argmin}}(E_m = E_{\text{val}}(\mathcal{A}_m(\mathcal{D}_{\text{train}})))$$

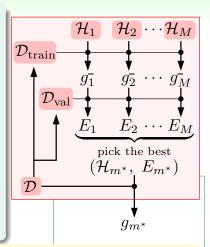
generalization guarantee for all m:

$$E_{\mathsf{out}}(oldsymbol{g_m^-}) \leq E_{\mathsf{val}}(oldsymbol{g_m^-}) + O\left(\sqrt{rac{\log M}{K}}
ight)$$

heuristic gain from N – K to N:

$$E_{ ext{out}}\left(\underbrace{m{g}_{m{m}^*}}_{\mathcal{A}_{m{m}^*}(\mathcal{D})}
ight) \leq E_{ ext{out}}\left(\underbrace{m{g}_{m{m}^*}^-}_{\mathcal{A}_{m{m}^*}(m{\mathcal{D}}_{ ext{train}})}
ight)$$

-learning curve, remember? :-)

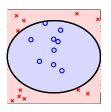


$$E_{ ext{out}}(g_{m^*}) \leq E_{ ext{out}}(oldsymbol{g}_{m^*}^-) \leq E_{ ext{val}}(oldsymbol{g}_{m^*}^-) + O\left(\sqrt{rac{\log M}{K}}
ight)$$

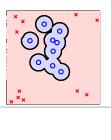
Principles of Learning

Occam's Razor for Learning

The simplest model that fits the data is also the most plausible.



which one do you prefer? :-)



Sampling Bias

If the data is sampled in a biased way, learning will produce a similarly biased outcome.

- technical explanation: data from P₁(x, y) but test under P₂ ≠ P₁: VC fails
- philosophical explanation: study Math hard but test English: no strong test guarantee

practical rule of thumb: match test scenario as much as possible

Visual Data Snooping

If a data set has affected any step in the learning process, its ability to assess the outcome has been compromised.

Visualize $\mathcal{X} = \mathbb{R}^2$

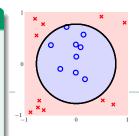
• full
$$\Phi_2$$
: $\mathbf{z} = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2), d_{VC} = 6$

• or
$$z = (1, x_1^2, x_2^2), d_{VC} = 3$$
, after visualizing?

• or better
$$\mathbf{z} = (1, x_1^2 + x_2^2)$$
, $d_{VC} = 2$?

• or even better
$$\mathbf{z} = (\text{sign}(0.6 - x_1^2 - x_2^2))$$
?

—careful about your brain's 'model complexity'



if you torture the data long enough, it will confess :-)

Dealing with Data Snooping

- truth—very hard to avoid, unless being extremely honest
- extremely honest: lock your test data in safe
- less honest: reserve validation and use cautiously
- be blind: avoid making modeling decision by data
- be suspicious: interpret research results (including your own) by proper feeling of contamination

one secret to winning KDDCups:

careful balance between data-driven modeling (snooping) and validation (no-snooping)

Summary

- What is Machine Learning
 - use data to approximate unknown target
- Perceptron Learning Algorithm

correct by mistake

- Types of Learning classification/regression; [un-]supervised/reinforcement
- Possibility of Learning

impossible in general, possible statistically

Linear Regression

analytic solution by pseudo inverse

- Logistic Regression
 - minimize cross-entropy error with gradient descent
- Nonlinear Transform

the secrete 'force' to enrich your model

Overfitting

the 'accident' in learning

- Principles of Learning
 - simple model, matching test scenario, & no snooping