Learning with Limited Labeled Data

Hsuan-Tien Lin 林軒田

Dept. of Computer Science and Information Enginnering, National Taiwan University 國立臺灣大學資訊工程學系

January 26, 2022 AI & Data Science Workshop

Learning with Limited Labeled Data

Outline

Learning with Limited Labeled Data

Learning from Label Proportions

Learning from Complementary Labels

Supervised Learning (Slide Modified from My ML Foundations MOOC)

H.-T. Lin (NTU)

Semi-Supervised Learning

H.-T. Lin (NTU)

Learning with Limited Labeled Data

Active Learning: Learning by 'Asking'

active learning (on top of semi-supervised): a few labeled examples + unlabeled pool + a few strategically-queried labels

(a) positive-unlabeled learning (b) learning with noisy labels (c) learning with complementary labels

- positive-unlabeled: some of true $y_n = +1$ revealed
- noisy: (cheaper) noisy label y'_n instead of true y_n
- complementary: 'not label' \overline{y}_n instead of true y_n

weakly-supervised: a few (no) labeled examples + many 'related' and easier-to-get labels

H.-T. Lin (NTU)

Learning with Limited Labeled Data

Our Ongoing Research Quests

Learning from Limited Labeled Data (L³D)

- in supervised learning
 - e.g. uneven-margin augmentation for imbalanced learning?
- in interactive learning
 - e.g. can strategically obtained labels push L³D to the extreme?
- in generative learning
 - e.g. development with cloned data first, validate with limited labeled data later?
- in weakly-supervised learning
 - e.g. sketch with weak labels first, refine with limited labeled data later—or maybe learn from many weak labels only?

Some of Our Selected Work

- zero-shot learning (ICLR 2021): no labeled data but only descriptions for new classes
- learning from complementary labels (ICML 2020): cheaper weakly labeled data
- obust estimation (gaze: BMVC 2020, typhoon: KDD 2018):
 domain-driven data augmentation
- robust generation (NeurIPS 2021): math-driven objective augmentation
- active learning (EMNLP 2020): a few actively labeled data

Learning with Limited Labeled Data

Quick Stories about Augmentation (1/3) (Ashesh, 2021)

H.-T. Lin (NTU)

Quick Stories about Augmentation (2/3) (Chen, 2018)

Learning with Limited Labeled Data

Quick Stories about Augmentation (3/3) (Chen, 2021)

$$\log p(x, y) = \frac{\log p(x \mid y)}{\log p(y \mid x)} + \log p(y)$$
$$= \frac{\log p(y \mid x)}{\log p(y \mid x)} + \frac{\log p(x)}{\log p(x)}$$

Learning from Label Proportions

Outline

Learning with Limited Labeled Data

Learning from Label Proportions

Learning from Complementary Labels

H.-T. Lin (NTU)

Learning from Label Proportions

motivations

- expensive labeling
- privacy issues

LLP: learn an instance-level classifier with proportion labels

LLP Setting

input

Given *M* bags B_1, \ldots, B_M , where the *m*-th bag contains a set of instances \mathcal{X}_m and a proportion label \mathbf{p}_m , defined by

$$\mathbf{p}_m = \frac{1}{|\mathcal{X}_m|} \sum_{n: \mathbf{x}_n \in \mathcal{X}_m} \mathbf{e}^{(y_n)}, \quad \bigcup_{m=1}^M \mathcal{X}_m = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}.$$

output

learn a usual instance classifier $g_{ heta}:\mathbb{R}^{D} o$ estimated probability

Learning from Label Proportions

Our Sol.: LLP w/ Consistency Regularization (Tsai, 2020)

vanilla: bag-level proportion loss

 $L_{prop} = KL(\mathbf{p} \| \hat{\mathbf{p}})$

- 'distance' between target **p** and estimated $\hat{\mathbf{p}} = \frac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} g_{\theta}(\mathbf{x})$ small
- extension of standard cross-entropy loss

$$L_{\textit{cons}} = rac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} \textit{KL}(g_{ heta}(\mathbf{x}) \| g_{ heta}(\hat{\mathbf{x}}))$$

instance-level regularization

- 'difference' between x and perturbed x small
- mature technique for semi-supervised learning

LLP with consistency regularization: $L = L_{prop} + \alpha L_{cons}$ Learning from Label Proportions

Consistency Loss by Virtual Adversarial Training

smoothness assumption

if $\mathbf{x}_i \approx \mathbf{x}_j$, then $y_i \approx y_j$

goal

encourage the classifier to produce consistent outputs for neighbors

Virtual Adversarial Training (Miyato, 2018)

generate a perturbed example $\hat{\mathbf{x}}$ that most likely causes the model to misclassify

$$\hat{\mathbf{x}} = \operatorname*{argmax}_{\|\hat{\mathbf{x}}-\mathbf{x}\| \leq r} \mathit{KL}(g_{ heta}(\mathbf{x})\|g_{ heta}(\hat{\mathbf{x}}))$$

consistency loss w/ VAT: $L_{cons}(\theta) = KL(g_{\theta}(\mathbf{x}) || g_{\theta}(\hat{\mathbf{x}}))$

H.-T. Lin (NTU)

Experimental Results

		Bag Size				
Dataset	Method	16	32	64	128	256
SVHN	vanilla	95.28	95.20	94.41	88.93	12.64
	LLP-VAT	<mark>95.66</mark>	<mark>95.73</mark>	<mark>94.60</mark>	<mark>91.24</mark>	11.18
CIFAR10	vanilla	88.77	85.02	70.68	47.48	38.69
	LLP-VAT	<mark>89.30</mark>	<mark>85.4</mark> 1	72.49	50.78	41.62
CIFAR100	vanilla	58.58	48.09	20.66	5.82	2.82
	LLP-VAT	59.47	48.98	22.84	<mark>9.40</mark>	<mark>3.29</mark>

consistency regularization (VAT) helps!

Take-Home Message

- LLP: a typical weakly-supervised learning problem
- consistency regularization helps —can other regularization help?
- anyone using?
 - 50% accuracy on 10 class for big bags?!
 - no real-world data yet

Learning from Complementary Labels

Outline

Learning with Limited Labeled Data

Learning from Label Proportions

Learning from Complementary Labels

Learning from Complementary Labels

Fruit Labeling Task (Image from AICup in 2020)

hard: true label	easy: complementary label		
orange ?orange ?cherrybanana	 orange cherry mango banana X 		

complementary: less labeling cost/expertise required

H.-T. Lin (NTU)

Comparison

Ordinary (Supervised) Learning

training:
$$\{(\mathbf{x}_n = \mathbf{x}_n, y_n = \text{mango})\} \rightarrow \text{classifier}$$

Complementary Learning

training:
$$\{(\mathbf{x}_n = \mathbf{x}_n, \overline{y}_n = \text{banana})\} \rightarrow \text{classifier}$$

testing goal: **classifier**(
$$\rightarrow$$
) \rightarrow cherry

ordinary versus complementary: same goal via different training data

H.-T. Lin (NTU)

Learning from Complementary Labels

Learning with Complementary Labels Setup

Given

N examples (input \mathbf{x}_n , complementary label \overline{y}_n) $\in \mathcal{X} \times \{1, 2, \dots K\}$ in data set \mathcal{D} such that $\overline{y}_n \neq y_n$ for some hidden ordinary label $y_n \in \{1, 2, \dots K\}$.

Goal

a multi-class classifier $g(\mathbf{x})$ that closely predicts (0/1 error) the ordinary label *y* associated with some **unseen** inputs *x*

LCL model design: connecting complementary & ordinary

Learning from Complementary Labels

Unbiased Risk Estimation for LCL

Ordinary Learning

• empirical risk minimization (ERM) on training data

risk: $\mathbb{E}_{(\mathbf{x},y)}[\ell(y,g(\mathbf{x}))]$ empirical risk: $\mathbb{E}_{(\mathbf{x}_n,y_n)\in\mathcal{D}}[\ell(y_n,g(\mathbf{x}_n))]$

• loss ℓ : usually surrogate of 0/1 error

LCL (Ishida, 2019)

• rewrite the loss ℓ to $\overline{\ell}$, such that

unbiased risk estimator: $\mathbb{E}_{(\mathbf{x},\overline{y})}[\overline{\ell}(\overline{y},g(\mathbf{x}))] = \mathbb{E}_{(\mathbf{x},y)}[\ell(y,g(\mathbf{x}))]$

under assumptions (e.g. uniform complementary labels)

• LCL by minimizing URE

URE: pioneer models for LCL

H.-T. Lin (NTU)

URE Overfits Easily

$$\ell = -\log(\boldsymbol{p}(\boldsymbol{y} \mid \boldsymbol{x}))$$

$$\bar{\ell} = (K-1)\log(\boldsymbol{p}(\bar{\boldsymbol{y}} \mid \boldsymbol{x})) - \sum_{k=1}^{K}\log(\boldsymbol{p}(k \mid \boldsymbol{x}))$$

ordinary risk and URE very different

- $\ell > 0 \rightarrow$ ordinary risk non-negative
- small p(y
 | x) (often) → possibly very negative l
 empirical URE can be negative on some observed y
- negative empirical URE drags minimization towards overfitting

how can we avoid negative empirical URE?

Learning from Complementary Labels

Proposed Framework (Chou, 2021)

Minimize Complementary 0/1

- our goal: minimize 0/1 loss instead of ℓ
- unbiased estimator of R₀₁ is simple

$$\overline{\boldsymbol{R}}_{\overline{\boldsymbol{01}}}: \quad \mathbb{E}_{\overline{\boldsymbol{y}}}[\overline{\ell}_{01}(\overline{\boldsymbol{y}},g(\mathbf{x}))] = \ell_{01}(\boldsymbol{y},g(\mathbf{x}))$$

• $\overline{\ell}_{01}$ as the complementary 0/1 loss:

$$\overline{\ell}_{01}(\overline{y},g(\mathbf{x})) = \llbracket \overline{y} = g(\mathbf{x})
rbracket$$

Surrogate Complementary Loss (SCL): surrogate after complementary 0/1

Illustrative Difference between URE and SCL

URE: Ripple effect of errors

- Theoretical motivation (Ishida, 2017)
- Estimation step (E) amplifies approximation error (A) in $\overline{\ell}$

SCL: 'Directly' minimize complementary likelihood

- Non-negative loss ϕ
- Practically prevents ripple effect

Negative Risk Avoided

Unbiased Risk Estimator (URE)

URE loss $\overline{\ell}_{CE}$ from cross-entropy ℓ_{CE} ,

$$\overline{\ell}_{CE}(\overline{y}, g(\mathbf{x})) = \underbrace{(K-1)\log(\mathbf{p}(\overline{y} \mid \mathbf{x}))}_{\text{negative loss term}} - \sum_{j=1}^{K}\log(\mathbf{p}(j \mid \mathbf{x}))$$

can go negative.

Surrogate Complementary Loss (SCL)

a surrogate of $\overline{\ell}_{01}$ (Kim, 2019)

$$\phi_{\mathsf{NL}}(\overline{y}, g(\mathbf{x})) = -\log(1 - \boldsymbol{p}(\overline{y} \mid \mathbf{x})))$$

remains non-negative.

H.-T. Lin (NTU)

Classification Accuracy

Methods

- Unbiased risk estimator (URE) (Ishida, 2019)
- 2 Surrogate complementary loss (SCL)

Table: URE and NN are based on $\overline{\ell}$ rewritten from cross-entropy loss, while SCL is based on exponential loss $\phi_{\mathsf{EXP}}(\overline{y}, g(\mathbf{x})) = \exp(\mathbf{p}_{\overline{y}})$.

Data set + Model	URE	SCL
MNIST + Linear	0.850	0.902
MNIST + MLP	0.801	0.925
CIFAR10 + ResNet	0.109	0.492
CIFAR10 + DenseNet	0.291	0.544

Gradient Analysis

Gradient Direction of URE

- Very diverged directions on each \overline{y} to maintain unbiasedness
- Low correlation to the target ℓ_{01}

Gradient Direction of SCL

- Targets to minimum likelihood
 objective
- High correlation to the target $\overline{\ell}_{01}$

Figure: Illustration of URE

Gradient Estimation Error

Bias-Variance Decomposition

$$\mathsf{MSE} = \mathbb{E}[(\boldsymbol{f} - \boldsymbol{c})^2] \\ = \underbrace{\mathbb{E}[(\boldsymbol{f} - \boldsymbol{h})^2]}_{\mathsf{Bias}^2} + \underbrace{\mathbb{E}[(\boldsymbol{h} - \boldsymbol{c})^2]}_{\mathsf{Variance}}$$

Gradient Estimation

- **1** Ordinary gradient $f = \nabla \ell(y, g(\mathbf{x}))$
- **2** Complementary gradient $\boldsymbol{c} = \nabla \overline{\ell}(\overline{y}, g(\mathbf{x}))$
- 3 Expected complementary gradient h

Bias-Variance Tradeoff

Findings

• SCL reduces variance by introducing small bias (towards \overline{y})

	Bias	Variance	MSE
URE	0	Big	Big
SCL	Small	Small	Small

Take-Home Message

- LCL: another popular weakly-supervised learning problem
- surrogate on complementary helps
 - avoid negative loss
 - lower gradient variance (with trade-off in bias)
- anyone using?
 - uniform complementary generation unrealistic (ongoing)
 - need stronger theoretical guarantee (ongoing)

Learning from Complementary Labels

Thank you! Questions?