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Learning with Limited Labeled Data

Supervised Learning
(Slide Modified from My ML Foundations MOOC)

unknown target function
f:rxXx—=Yy

training examples
D: (X1, 1), (Xns YN))

learning PR Ru—
algorithm naj gyios‘ esis
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hypothesis set
H

supervised learning: every input vector
(picture) x,, with its label (category) y,
—what if limited labeled data?
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Learning with Limited Labeled Data

Semi-Supervised Learning

unknown target function
f: x>y

training examples
D: (X1,y1),- - (Xms Ym),
XN415- -5 XN

learning
algorithm
A

final hypothesis
g f

hypothesis set
H

semi-supervised learning:
a few labeled examples
+ many unlabeled examples
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Learning with Limited Labeled Data

Active Learning: Learning by ‘Asking’

Protocol < Learning Philosophy

® batch: ‘duck feeding’
e active: ‘question asking’ (iteratively)

unknown target function —query yn of chosen x,
frX—Y

)N

labeled training examples

@ ), (@, 1), () | ©

learning ; ;

final hypoth
(1), (W, 1), (@, 1) algorithm o
unlabeled training examples A

& e . e

active learning (on top of semi-supervised):
a few labeled examples + unlabeled pool
+ a few strategically-queried labels
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Learning with Limited Labeled

Weakly-Supervised Learning:
Learning without True Labels
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(a) positive-unlabeled learning (b) learning with noisy labels (c) learning with complementary labels

® positive-unlabeled: some of true y, = +1 revealed
® noisy: (cheaper) noisy label y;, instead of true y,
e complementary: ‘not label’ y,, instead of true y,

weakly-supervised:
a few (no) labeled examples
+ many ‘related’ and easier-to-get labels
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Learning with Limited Labeled Data

Our Ongoing Research Quests

Learning from Limited Labeled Data (L3D)

© in supervised learning

¢ e.g. uneven-margin augmentation for imbalanced learning?
* in interactive learning

° e.g. can strategically obtained labels push L3D to the extreme?
© in generative learning

° e.g. development with cloned data first, validate with limited
labeled data later?

© in weakly-supervised learning

¢ e.g. sketch with weak labels first, refine with limited labeled data
later—or maybe learn from many weak labels only?
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Learning with Limited Labeled Data

Some of Our Selected Work

target

caing ). 859,
algorithm hypothesis

learning model
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© zero-shot learning (ICLR 2021):
no labeled data but only
descriptions for new classes

® learning from complementary
labels (ICML 2020): cheaper
weakly labeled data

©® robust estimation (gaze: BMVC
2020, typhoon: KDD 2018):
domain-driven data
augmentation

@ robust generation (NeurlPS
2021): math-driven objective
augmentation

@ active learning (EMNLP 2020): a
few actively labeled data
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Learning with Limited Labeled Data

Quick Stories about Augmentatio
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Learning with Limited Labeled Data

Quick Stories about Augmentation (2/3) (chen, 2018)

Blend_num experiment
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Learning with Limited Labeled Data

Quick Stories about Augmentation (3/3) (chen, 2021)

Label

Embeclding

F@ﬂ(oo o)

Softmax CE Loss U'mw\d Adv. Los:

Cond. Adv Loss

Cond. Distribution
log p(x,y) =|log p(x | y)|+ log p(y)
=|logp(y | x)|+/log p(x)|

Classifier Uncond. Distribution
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Learning from Label Proportions

Learning from Label Proportions

bag [a, 0, s, K]

(@ Va§, |
080,90, | : J

motivations

* expensive labeling
® privacy issues

LLP: learn an instance-level classifier with
proportion labels
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Learning from Label Proportions

LLP Setting
Given M bags By, . .., By, where the m-th bag contains a set of

instances X, and a proportion label p,, defined by

M
1
Pm=—— > e | ) An={x...,xn}.
m=1

n: Xn€Xm

v

learn a usual instance classifier gy : RP — estimated probability \
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Learning from Label Proportions

Our Sol.: LLP w/ Consistency Regularization (rsai, 2020)

vanilla: bag-level proportion loss

Lprop = KL(p||P)

¢ ‘distance’ between target p and
estimated p = |17| > e 90(X)
small

e extension of standard
cross-entropy loss

instance-level regularization

Loons — |1;4 S KL(g6(%)/]96(%))

XeXxX
o ‘difference’ between x and
perturbed x small

* mature technique for
semi-supervised learning

Epoch 1000

.
.
iy

’
.

LLP with consistency regularization:

L = Lprop + aLcons
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Learning from Label Proportions

Consistency Loss by Virtual Adversarial Training

smoothness assumption
if X; ~ x;, then y; ~ y;

encourage the classifier to produce consistent outputs for neighbors \

Virtual Adversarial Training (Miyato, 2018)

generate a perturbed example x that most
likely causes the model to misclassify

unlabeled
example

X = argmax KL(gy(X)||gs(X))

[[x—x]|<r

consistency loss w/ VAT:
Leons(0) = KL(gs(X)|0(X)) J
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Learning from Label Proportions

Experimental Results

Bag Size
Dataset Method 16 32 64 128 256
SVHN vanilla 95.28 95.20 94.41 88.93 12.64
LLP-VAT 9566 95.73 94.60 91.24 11.18
CIFAR10  vanilla 88.77 85.02 70.68 47.48 38.69
LLP-VAT 89.30 85.41 72.49 50.78 41.62
CIFAR100 vanilla 58.58 48.09 20.66 5.82 2.82
LLP-VAT 59.47 48.98 22.84 9.40 3.29

consistency regularization (VAT) helps!

)
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Learning from Label Proportions

Take-Home Message
e LLP: a typical weakly-supervised learning problem
e consistency regularization helps
—can other regularization help?

® anyone using?
* 50% accuracy on 10 class for big bags?!
* no real-world data yet
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Learning from Complementary Labels

Fruit Labeling Task (Image from AlCup in 2020)

hard: true label easy: complementary label
¢ orange ? ¢ cherry ® orange e cherry
© mango ? © banana * mango * banana X
complementary: less labeling
cost/expertise required J

H.-T. Lin (NTU) Learning with Limited Labeled Data 19/32



Learning from Complementary Labels

Comparison
earning

Ordinary (Supervised) L

training:  {(x, =1 ,¥n = mango)} — classifier

v

Complementary Learning

. ,¥, =banana)} — classifier

training: {(x, =1

testing goal: classifier( e ) — cherry

ordinary versus complementary:
same goal via different training data J
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Learning from Complementary Labels

Learning with Complementary Labels Setup

N examples (input x,, complementary label y,) € X x {1,2,--- K} in
data set D such that y,, # y, for some hidden ordinary label
Yn € {1727K}

a multi-class classifier g(x) that closely predicts (0/1 error) the
ordinary label y associated with some unseen inputs x

LCL model design: connecting
complementary & ordinary
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Learning from Complementary Labels

Unbiased Risk Estimation for LCL

Ordinary Learning

e empirical risk minimization (ERM) on training data

risk: E )[¢(y,9(x))] empirical risk: K, ,\ep[l(Vn, 9(Xn))]

* loss ¢: usually surrogate of 0/1 error

LCL (ishida, 2019)

e rewrite the loss ¢ to ¢, such that

unbiased risk estimator: E 3 [0(y, 9(x))] = B[4y, 9(X))]

under assumptions (e.g. uniform complementary labels)
e LCL by minimizing URE

.

URE: pioneer models for LCL J
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Learning from Complementary Labels

URE Overfits Easily

¢ = —log(p(y |x))

t = (K—1)log(p(y | %)) Zlog (k | x))

ordinary risk and URE very different

® ¢ > 0 — ordinary risk non-negative

e small p(y | x) (often) — possibly very negative ¢
empirical URE can be negative on some observed y

e negative empirical URE drags minimization towards overfitting

how can we avoid negative empirical URE? ]

H.-T. Lin (NTU) Learning with Limited Labeled Data 23/32



Learning from Complementary Labels

Proposed Framework (chou, 2021)

Minimize Complementary 0/1

e our goal: minimize 0/1 loss instead of ¢
® unbiased estimator of Ry is

Rgi:  Eyllot (¥, 9(X))] = o1 (v, 9(X))
e /oy as the complementary 0/1 loss:

lo1(¥,9(x)) = [y = g(x)]

Surrogate Complementary Loss (SCL):
surrogate complementary 0/1
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Learning from Complementary Labels

[llustrative Difference between URE and SCL

E — B
URE A R R; R;
/
Roq
- =[5
SCL Rot [~ Rs R,

URE: Ripple effect of errors

e Theoretical motivation (Ishida, 2017)
e Estimation step (E) amplifies approximation error (A) in ¢

SCL: ‘Directly’ minimize complementary likelihood

Non-negative loss ¢
Practically prevents ripple effect
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Learning from Complementary Labels

Negative Risk Avoided
Unbiased Risk Estimator (URE)
URE loss /¢ from cross-entropy /cg,

lee(y,9(x)) = (K — 1)|0g( p(y | X)) Zlog p( [ X))

negative loss term j=1

can go negative.

Surrogate Complementary Loss (SCL)

a surrogate of fpq (Kim, 2019)

oNL(Y, g(x)) = —log(1 — p(¥ | X)))

remains non-negative.
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Learning from Complementary Labels

Classification Accuracy

© Unbiased risk estimator (URE) (ishida, 2019)
® Surrogate complementary loss (SCL)

Table: URE and NN are based on 7 rewritten from cross-entropy loss, while

SCL is based on exponential loss ¢exe (¥, 9(X)) = exp(py)-

Data set + Model URE | SCL

MNIST + Linear 0.850 | 0.902
MNIST + MLP 0.801 | 0.925
CIFAR10 + ResNet 0.109 | 0.492
CIFAR10 + DenseNet | 0.291 | 0.544
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Learning from Complementary Labels

Gradient Analysis

Gradient Direction of URE
¢ Very diverged directions on each y to maintain unbiasedness

e Low correlation to the target 41

Gradient Direction of SCL

¢ Targets to minimum likelihood
objective

¢ High correlation to the target
Lo

Figure: lllustration of URE
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Learning from Complementary Labels

Gradient Estimation Error

Bias-Variance Decomposition

MSE = E|(f - ¢)?]
=E[(f - h?’] +E[(h - ¢)?]

N J

-~

Ve
Bias? Variance

Gradient Estimation

@ Ordinary gradient f = V/{(y, g(x))
® Complementary gradient ¢ = V/(y, g(x))
©® Expected complementary gradient h

H.-T. Lin (NTU) Learning with Limited Labeled Data 29/32



Learning from Complementary Labels

Bias-Variance Tradeoff

o » W w0 om0 o W
epachs

(c) Variance

e SCL reduces variance by introducing small bias (towards y)

Bias Variance | MSE
URE | 0 Big Big
SCL | Small | Small Small
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Learning from Complementary Labels

Take-Home Message
¢ LCL: another popular weakly-supervised learning problem

e surrogate on complementary helps

® avoid negative loss
* |ower gradient variance (with trade-off in bias)

* anyone using?
¢ uniform complementary generation unrealistic (ongoing)
* need stronger theoretical guarantee (ongoing)
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Learning from Complementary Labels

Thank you! Questions? |
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