Learning for Big Data

Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

slightly modified from my keynote talk in IEEE BigData 2015 Taipei Satellite Session

About the Title

- "Learning for Big Data" —my wife: you have made a typo
- do you mean "Learning from Big Data"?
 —no, not a shameless sales campaign for my co-authored best-selling book () (http://amlbook.com)

as machine learning researcher

machine learning for big data —easy?! 🙂

as machine learning educator

human learning for big data —hard!!

will focus on human learning for big data

Hsuan-Tien Lin (NTU CSIE)

Human Learning for Big Data

Todo

- some FAQs that I have encountered as
 - educator (NTU and NTU@Coursera)
 - team mentor (KDDCups, TSMC Big Data competition, etc.)
 - researcher (CLLab@NTU)
 - consultant (^{Qppier}), a real-time advertisement bidding startup
- my imperfect yet honest answers that hint what shall be learned

First Honest Claims

- must-learn for big data ≈ must-learn for small data in ML, but the former with bigger seriousness
- system design/architecture very important, but somewhat beyond my pay grade

I wish I had an answer to that because I'm tired of answering that question. —Yogi Berra (Athlete) 😳

Hsuan-Tien Lin (NTU CSIE)

Big Data FAQs (1/4)

how to ask good questions from (my precious big) data?

My Polite Answer

good start already \bigcirc , any more thoughts that you have in mind?

My Honest Answer

I don't know.

or a slightly longer answer: if you don't know, I don't know.

A Similar Scenario

how to ask good questions from (my precious big) data? how to find a research topic for my thesis?

My Polite Answer

good start already (;), any more thoughts that you have in mind?

My Honest Answer

I don't know.

or a slightly longer answer: I don't know, but perhaps you can start by thinking about motivation and feasibility.

Asking Questions

Finding (Big) Data Questions \approx Finding Research Topics

- motivation: what are you interested in?
- feasibility: what can or cannot be done?

motivation

- something publishable?
 oh, possibly just for
 people in academia (:)
- something that improves xyz performance
- something that inspires deeper study

-helps generate questions

feasibility

- modeling
- computational
- budget
- timeline

. . .

-helps filter questions

brainstorm from **motivation**; rationalize from **feasibility**

Hsuan-Tien Lin (NTU CSIE)

Finding **Big** Data Questions

generate questions from motivation

- variety: dream more in big data age
- velocity: evolving data, evolving questions

filter questions

from feasibility

- volume: computational bottleneck
- veracity: modeling with non-textbook data

almost never find right question in your first try —good questions come interactively **Asking Questions**

Interactive Question-Asking from Big Data: Our KDDCup 2011 Experience (1/2)

Recommender System

- data: how users have rated movies
- goal: predict how a user would rate an unrated movie

A Hot Problem

- competition held by Netflix in 2006
 - 100,480,507 ratings that 480,189 users gave to 17,770 movies
 - 10% improvement = 1 million dollar prize
- similar competition (movies → songs) held by Yahoo! in KDDCup 2011, the most prestigious data mining competition
 - 252,800,275 ratings that 1,000,990 users gave to 624,961 songs

National Taiwan University got two **world champions** in KDDCup 2011—with Profs. Chih-Jen Lin, Shou-De Lin, and many students.

Hsuan-Tien Lin (NTU CSIE)

Asking Questions Interactive Question-Asking from Big Data: Our KDDCup 2011 Experience (2/2)

Q1 (pre-defined): can we improve rating prediction of (user, song)?

Q1.1 after **data analysis**: two types of users, **lazy** 7% (same rating always) & **normal** —if a user gives 60, 60, ... during training, how'd she rate next item?

same (80%) different (20%)

Q1.1.1: can we **distinguish 80%** using other features?

-failed (something you normally wouldn't see in paper \bigcirc)

Q1.2 after considering domain knowledge: test data are newer logs

---shall we emphasize newer logs in training data?

Q1.2.1: can we just give each log different weight? (but how?)

Q1.2.2: can we **tune optimization** to effectively emphasize newer logs? (**yes this worked** $\textcircled{\odot}$)

our KDDCup experience: interactive (good or bad) question-asking kept us going!

Hsuan-Tien Lin (NTU CSIE)

. . .

Asking Questions

Learning to Ask Questions from Big Data

Must-learn Items

- true interest for motivation
 - -big data don't generate questions, big interests do
- capability of machines (when to use ML?) for feasibility

Taught in ML Foundations on NTU@Coursera

exists underlying pattern to be learned

- 2 no easy/programmable definition of pattern
- 3 having data related to pattern

-ML isn't cure-all

research cycle for systematic steps

 a Ph.D. or serious research during M.S./undergraduate study

Computers are useless. They can only give you answers.—Pablo Picasso (Artist)

Hsuan-Tien Lin (NTU CSIE)

Big Data FAQs (2/4)

what is the best machine learning model for (my precious big) data?

My Polite Answer

the best model is data-dependent, let's chat about your data first

My Honest Answer

I don't know.

or a slightly longer answer: I don't know about **best**, but perhaps you can **start** by thinking about **simple models**.

Sophisticated Model for Big Data what is the best machine learning model for (my precious big) data? what is the **most sophisticated** machine learning model for (my precious big) data?

- myth: my big data work best with most sophisticated model
- partially true: deep learning for image recognition @ Google
 —10 million images on 1 billion internal weights

(Le et al., Building High-level Features Using Large Scale Unsupervised Learning, ICML 2012)

Science must begin with myths, and with the criticism of myths. —Karl Popper (Philosopher)

Hsuan-Tien Lin (NTU CSIE)

Criticism of Sophisticated Model

myth: my **big data** work best with **most sophisticated** model

Sophisticated Model

- time-consuming to train and predict —often mismatch to big data
- difficult to tune or modify —often exhausting to use
- point of no return

-often cannot "simplify" nor "analyze"

sophisticated model shouldn't be first-choice for big data

Hsuan-Tien Lin (NTU CSIE)

Linear First (1/2)

what is the **first** machine learning model for (my precious big) data?

Taught in ML Foundations on NTU@Coursera

linear model (or simpler) first:

• efficient to train and predict, e.g. (Lin et al., Large-scale logistic regression

and linear support vector machines using Spark. IEEE BigData 2014)

-my favorite in Cppier

, a real-time ad. bidding startup

easy to tune or modify

 key of our KDDCup winning solutions in 2010 (educational data mining) and 2012 (online ads)

Linear First (2/2) what is the **first** machine learning model for (my precious big) data?

Taught in ML Foundations on NTU@Coursera

linear model (or simpler) first:

- somewhat "analyzable"
 - -my students' winning choice in TSMC Big Data Competition (just old-fashioned linear regression! ③)
- little risk
 - if linear good enough, live happily thereafter 🙂
 - otherwise, try something more complicated, with theoretically nothing lost except "wasted" computation

My KISS Principle: Keep It Simple, Stupic Safe

Hsuan-Tien Lin (NTU CSIE)

Simple Model

Learning to Start Modeling for Big Data

Must-learn Items

- linear models, especially
 - how to tune them
 - how to interpret their outcomes
- simple models with frequency-based probability estimates, such as Naïve Bayes
- decision tree (or perhaps even better, Random Forest) as a KISS non-linear model

An explanation of the data should be made **as simple as possible**, but no simpler.—[?] Albert Einstein (Scientist)

Big Data FAQs (3/4)

how should I improve ML performance with (my precious big) data?

My Polite Answer

do we have **domain knowledge** about your problem?

My Honest Answer

I don't know.

or a slightly longer answer: I don't know for sure, but perhaps you can start by encoding your human intelligence/knowledge.

A Similar Scenario

how should I improve ML performance with (my precious big) data? how should I improve the performance of my classroom students?

instructor teaching = student learning

- teach more **concretely** \longrightarrow better performance
- teach more **professionally** \longrightarrow better performance
- teach more key points/aspects → better performance

to improve learning performance, you should perhaps **teach better**

Hsuan-Tien Lin (NTU CSIE)

Teaching Your Machine Better with Big Data

- concrete: good research questions, as discussed ☺
- professional: embed domain knowledge during data construction
- key: facilitate your learner using proper data pruning/cleaning/hinting

IMHO, data **construction** is more important for big data than machine learning is

Feature Construction

Your Big Data Need Further Construction

Big Data Characteristics

many fields, and many abstract ones

Our KDDCup 2010 Experience

educational data mining

(Yu et al., Feature Engineering and Classifier Ensemble for KDD Cup 2010)

- "Because all feature meanings are available, we are able to manually identify some useful pairs of features ...":
 - domain knowledge: "student s does step i of problem j in unit k"
 - hierarchical encoding: [has student s tried unit k] more meaningful than [has student s tried step i]
- *"Correct First-Attempt Rate" c_j* of each problem *j*:
 - domain knowledge: $c_j \approx$ hardness
 - condensed encoding: c_j physically more meaningful than j

feature engineering: make your (feature) data concrete by embedding domain knowledge

Hsuan-Tien Lin (NTU CSIE)

Learning to Construct Features for Big Data

Must-learn Items

- domain knowledge
 - if available, great!
 - if not, start by analyzing data first, not by learning from data —correlations, co-occurrences, informative parts, frequent items, etc.
- common feature construction techniques
 - encoding
 - combination
 - importance estimation: linear models and Random Forests especially useful (simple models, remember? (:))

one secret in winning KDDCups: ask **interactive questions** (remember?) that allows encoding **human intelligence** into **feature construction**

Hsuan-Tien Lin (NTU CSIE)

Big Data FAQs (4/4)

how should I escape from the unsatisfactory test performance on (my precious big) data?

My Step by Step Diagnosis

if (training performance okay) [> 90% of the time]

- combat overfitting
- correct training/testing mismatch
- check for misuse

else

- construct better features by asking more questions, remember? :
- now you can try more sophisticated models

will focus on the first part

Hsuan-Tien Lin (NTU CSIE)

Trap Escaping

Combat Overfitting (1/2)

myth: my **big data** is so big that overfitting is impossible

- no, big data usually high-dimensional
- no, big data usually heterogeneous
- no, big data usually redundant
- no, big data usually noisy



big data still require careful treatment of overfitting

Hsuan-Tien Lin (NTU CSIE)

Combat Overfitting (2/2)

Driving Analogy of Overfitting

learning	driving	
overfit	commit a car accident	
sophisticated model	"drive too fast"	
noise	bumpy road	
limited data size	limited observations about road condition	
big data only cross out last line		

Regularization

regularization put brake

-important to know

where the brake is

Validation

validation monitor dashboard —important to ensure correctness

Overfitting is real, and here to stay.—Learning from Data (Book)

Hsuan-Tien Lin (NTU CSIE)

Correct Training/Testing Mismatch

A True Personal Story

- Netflix competition for movie recommender system: 10% improvement = 1M US dollars
- on my own validation data, first shot, showed 13% improvement
- why am I still teaching in NTU? validation: random examples within data; test: "last" user records "after" data

Technical Solutions

practical rule of thumb: match test scenario as much as possible

- training: emphasize later examples (KDDCup 2011)
- validation: use "late" user record

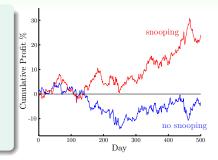
If the data is sampled in a biased way, learning will produce a similarly biased outcome.—Learning from Data (Book)

Hsuan-Tien Lin (NTU CSIE)

Trap Escaping

Biggest Misuse of Machine Learning: Data Snooping

- 8 years of currency trading data
- first 6 years for training, last two 2 years for testing
- feature = previous 20 days, label = 21th day
- snooping versus no snooping: superior profit possible



- snooping: shift-scale all values by training + testing
- no snooping: shift-scale all values by training only

Data Snooping by Data Reusing Data Snooping by Data Reusing: Research Scenario

with my precious data

- paper 1: propose algorithm 1 that works well on data
- paper 2: find room for improvement, propose algorithm 2
 —and publish only if better than algorithm 2 on data
- paper 3: find room for improvement, propose algorithm 3
 —and publish only if better than algorithm 2 on data

- if all papers from the same author in **one big paper**: *as if* using a super-sophisticated model that includes algorithms 1, 2, 3, ...
- step-wise: later author **snooped** data by reading earlier papers, bad generalization worsen by **publish only if better**

If you torture the data long enough, it will confess.—Folklore in ML/DM 😳

Hsuan-Tien Lin (NTU CSIE)

. . .

Avoid Big Data Snooping data snooping \implies human overfitting

Honesty Matters

- very hard to avoid data snooping, unless being extremely honest
- extremely honest: lock your test data in safe
- less honest: reserve validation and use cautiously

Guidelines

- be blind: avoid making modeling decision by data
- be suspicious: interpret findings (including your own) by proper feeling of contamination—keep your data fresh if possible

one last secret to winning KDDCups: "art" to carefully balance between data-driven modeling (snooping) & validation (no-snooping)

Trap Escaping

Learning to Escape Traps for Big Data

Must-learn Items

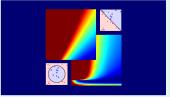
- combat overfitting: regularization and validation
- correct training/testing mismatch: philosophy and perhaps some heuristics
- avoid data snooping: philosophy and research cycle (remember? ③)

happy big data learning! 🙂

Summary

- human must-learn ML topics for big data:
 - procedure: research cycle
 - tools: simple model, feature construction, overfitting elimination
 - sense: philosophy behind machine learning
- foundations even more important in big data age

 now a shameless sales campaign for my co-authored book and online course (to be re-run on September 8, 2015) ::)



—special thanks to Prof. Yuh-Jye Lee and Mr. Yi-Hung Huang for suggesting materials

Thank you!

Hsuan-Tien Lin (NTU CSIE)

Appendix: ML Foundations on NTU@Coursera

https://www.coursera.org/course/ntumlone

When can machines learn?

- L1: the learning problem (^(:))
- L2: learning to answer yes/no
 (^(:))
- L3: types of learning (③)
- L4: feasibility of learning

Why can machines learn?

- L5: training versus testing
- L6: theory of generalization
- L7: the VC dimension (^(:))
- L8: noise and error

How can machines learn?

- L9: linear regression (^(:))
- L10: logistic regression (^(:))
- L11: linear models for classification (☺)
- L12: nonlinear transformation (^(:))

How can machines learn better?

- L13: hazard of overfitting (^(:))
- L14: regularization (③)
- L15: validation (③)
- L16: three learning principles (^(:))

 $\bigcirc \approx must-learn$