Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels

Yu-Ting Chou, Gang Niu, Hsuan-Tien Lin, Masashi Sugiyama

ICML 2020 work done during Chou’s internship at RIKEN AIP, Japan; resulting M.S. thesis of Chou won the 2020 thesis award of TAAI

October 8, 2021, AI Forum, Taipei, Taiwan
Supervised Learning
(Slide Modified from My ML Foundations MOOC)

unknown target function
\(f : \mathcal{X} \to \mathcal{Y} \)

training examples
\(\mathcal{D} : (x_1, y_1), \cdots , (x_N, y_N) \)

learning algorithm
\(\mathcal{A} \)

final hypothesis
\(g \approx f \)

supervised learning:
every input vector \(x_n \) with
its (possibly expensive) label \(y_n \),
Introduction

Weakly-supervised: Learning without True Labels y_n

- **positive-unlabeled**: some of true $y_n = +1$ revealed
- **complementary**: ‘not label’ \bar{y}_n instead of true y_n
- **noisy**: noisy label y'_n instead of true y_n

weakly-supervised: a **realistic** and **hot** research direction to reduce labeling burden

[EN08] Learning classifiers from only positive and unlabeled data, KDD’08.
[Ish+17] Learning from complementary labels, NeurIPS’17.
Introduction

Motivation

popular weakly-supervised models [DNS15; Ish+19; Pat+17]
- derive Unbiased Risk Estimators (URE) as new loss
- theoretically, nice properties (unbiased, consistent, etc.) [Ish+17]
- practically, sometimes bad performance (overfitting)

our contributions: on Learning with Complementary Labels (LCL)
- analysis: identify weakness of URE framework
- algorithm: propose an improved framework
- experiment: demonstrate stronger performance

next: introduction to LCL

Motivation behind Learning with Complementary Label

complementary label \bar{y}_n instead of true y_n

<table>
<thead>
<tr>
<th>True Label</th>
<th>Meerkat</th>
<th>Prairie Dog</th>
<th>Monkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementary Label</td>
<td>Not “monkey”</td>
<td>Not “meerkat”</td>
<td>Not “prairie dog”</td>
</tr>
</tbody>
</table>

Figure 1 of [Yu+18]

complementary label: *easier/cheaper* to obtain for some applications
Fruit Labeling Task (Image from AICup in 2020)

hard: true label
- orange ?
- mango ?
- cherry
- banana

easy: complementary label
- orange
- mango
- cherry
- banana

complementary: less labeling cost/expertise required
Introduction

Comparison

Ordinary (Supervised) Learning

training: \(\{ (x_n = \text{mango}, y_n = \text{mango}) \} \rightarrow \text{classifier} \)

Complementary Learning

training: \(\{ (x_n = \text{mango}, \bar{y}_n = \text{banana}) \} \rightarrow \text{classifier} \)

testing goal: \(\text{classifier}(\text{cherry}) \rightarrow \text{cherry} \)

ordinary versus complementary: same goal via different training data
Learning with Complementary Labels Setup

Given

\[\text{\(N\) examples (input } x_n, \text{ complementary label } \bar{y}_n) \in \mathcal{X} \times \{1, 2, \cdots K\} \text{ in data set } \mathcal{D} \text{ such that } \bar{y}_n \neq y_n \text{ for some hidden ordinary label } \]

\[y_n \in \{1, 2, \cdots K\}. \]

Goal

a multi-class classifier \(g(x)\) that *closely predicts* (0/1 error) the ordinary label \(y\) associated with some *unseen* inputs \(x\)

LCL model design: connecting complementary & ordinary
Unbiased Risk Estimation for LCL

Ordinary Learning

- empirical risk minimization (ERM) on training data

 \[
 \text{risk: } \mathbb{E}_{(x, y)}[\ell(y, g(x))] \quad \text{empirical risk: } \mathbb{E}_{(x_n, y_n) \in \mathcal{D}}[\ell(y_n, g(x_n))]
 \]

- loss \(\ell \): usually **surrogate** of 0/1 error

LCL [Ish+19]

- rewrite the loss \(\ell \) to \(\bar{\ell} \), such that

 \[
 \text{unbiased risk estimator: } \mathbb{E}_{(x, \bar{y})}[\bar{\ell}(\bar{y}, g(x))] = \mathbb{E}_{(x, y)}[\ell(y, g(x))]
 \]

- LCL by minimizing **URE**

URE: pioneer models for LCL
Example of URE

Cross Entropy Loss

for \(g(x) = \arg \max_{k \in \{1,2,\ldots,K\}} p(k \mid x) \),

- \(\ell_{CE} \): derived by maximum likelihood as surrogate of 0/1

\[
\text{risk: } R(g; \ell_{CE}) = \mathbb{E}_{(x,y)} \left(- \log(p(y \mid x)) \right)
\]

Complementary Learning [Ish+19]

URE:

\[
\bar{R}(g; \bar{\ell}) = \mathbb{E}_{(x,\bar{y})} \left[(K - 1) \log(p(\bar{y} \mid x)) - \sum_{k=1}^{K} \log(p(k \mid x)) \right]
\]

under uniform \(\bar{y} \) assumption

ERM with URE:

\[
\min_{p} \bar{R} \text{ with } \mathbb{E} \text{ taken on } \mathcal{D}
\]
Problems of URE

URE overfits on single label

\[\ell = -\log(p(y | x)) \]

\[\bar{\ell} = (K - 1) \log(p(y | x)) - \sum_{k=1}^{K} \log(p(k | x)) \]

ordinary risk and URE very different

- \(\ell > 0 \rightarrow \) ordinary risk non-negative
- small \(p(y | x) \) (often) \(\rightarrow \) possibly very negative \(\bar{\ell} \)
 - empirical URE can be negative: only observing some but not all \(y \)
- negative empirical URE **drags minimization** towards overfitting

practical remedy: \([Ish+19]\)

NN-URE: constrain empirical URE to be non-negative

how can we avoid negative empirical URE?
Minimize Complementary 0/1

- Recall the goal: We minimize 0-1 loss instead of ℓ
- The unbiased estimator of R_{01}

$$R_{01} : \mathbb{E}_y[\ell_{01}(y, g(x))] = \ell_{01}(y, g(x))$$

- We denote ℓ_{01} as the complementary 0-1 loss:

$$\ell_{01}(y, g(x)) = [y = g(x)]$$

Surrogate Complementary Loss (SCL)

- Surrogate loss to optimize ℓ_{01}
- Unify previous work as surrogates of ℓ_{01} [Yu+18; Kim+19]

[Yu+18] Learning with biased complementary labels, ECCV’18.

Unbiased Risk Estimator (URE)

URE loss ℓ_{CE} [Ish+19] from cross-entropy ℓ_{CE},

$$\ell_{CE}(\overline{y}, g(x)) = (K - 1) \log(p(\overline{y} | x)) - \sum_{j=1}^{K} \log(p(j | x))$$

The negative loss term can go negative.

Surrogate Complementary Loss (SCL)

another loss [Kim+19], a surrogate ℓ_{01}

$$\phi_{NL}(\overline{y}, g(x)) = - \log(1 - p(\overline{y} | x)))$$

remains non-negative.
Illustrative Difference between URE and SCE

URE: Ripple effect of errors
- Theoretical motivation [Ish+17]
- Estimation step (E) amplifies approximation error (A) in ℓ

SCL: ‘Directly’ minimize complementary likelihood
- Non-negative loss ϕ
- Practically prevents ripple effect
Proposed Framework

Classification Accuracy

Methods

1. Unbiased risk estimator (URE) [Ish+19]
2. Non-negative correction methods on URE (NN) [Ish+19]
3. Surrogate complementary loss (SCL)

Table: URE and NN are based on ℓ rewritten from cross-entropy loss, while SCL is based on exponential loss $\phi_{\text{EXP}}(\hat{y}, g(x)) = \exp(p_{\hat{y}})$.

<table>
<thead>
<tr>
<th>Data set + Model</th>
<th>URE</th>
<th>NN</th>
<th>SCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST + Linear</td>
<td>0.850</td>
<td>0.818</td>
<td>0.902</td>
</tr>
<tr>
<td>MNIST + MLP</td>
<td>0.801</td>
<td>0.867</td>
<td>0.925</td>
</tr>
<tr>
<td>CIFAR10 + ResNet</td>
<td>0.109</td>
<td>0.308</td>
<td>0.492</td>
</tr>
<tr>
<td>CIFAR10 + DenseNet</td>
<td>0.291</td>
<td>0.338</td>
<td>0.544</td>
</tr>
</tbody>
</table>
Gradient Analysis

Gradient Direction of URE

- Very diverged directions on each \bar{y} to maintain unbiasedness
- Low correlation to the target ℓ_{01}

$\nabla \ell(y, g(x))$

$\nabla \bar{\ell}(\bar{y}, g(x))$

Figure: Illustration of URE

Gradient Direction of SCL

- Targets to minimum likelihood objective
- High correlation to the target $\bar{\ell}_{01}$
Gradient Analysis

Gradient Estimation Error

Bias-Variance Decomposition

\[
\text{MSE} = \mathbb{E}[(f - c)^2] \\
= \mathbb{E}[(f - h)^2] + \mathbb{E}[(h - c)^2]
\]

- **Bias**\(^2\)
- **Variance**

Gradient Estimation

1. Ordinary gradient \(f = \nabla \ell(y, g(x)) \)
2. Complementary gradient \(c = \nabla \ell(\bar{y}, g(x)) \)
3. Expected complementary gradient \(h \)
Bias-Variance Tradeoff

Findings

- SCL reduces variance by introducing small bias (towards \bar{y})

<table>
<thead>
<tr>
<th></th>
<th>Bias</th>
<th>Variance</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>URE</td>
<td>0</td>
<td>Big</td>
<td>Big</td>
</tr>
<tr>
<td>SCL</td>
<td>Small</td>
<td>Small</td>
<td>Small</td>
</tr>
</tbody>
</table>

Gradient Analysis
Conclusion

Explain Overfitting of URE
- Unbiased method only do well in expectation
- Single fixed complementary label cause overfitting

Surrogate Complementary Loss (SCL)
- Minimum likelihood approach
- Avoids negative risk problem

Experiment Results
- SCL significantly outperforms other methods
- Introduce small bias for lower gradient variance

