Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels

Yu-Ting Chou, Gang Niu, Hsuan-Tien Lin, Masashi Sugiyama

ICML 2020 work done during Chou's internship at RIKEN AIP, Japan; resulting M.S. thesis of Chou won the 2020 thesis award of TAAI

October 8, 2021, Al Forum, Taipei, Taiwan

Supervised Learning (Slide Modified from My ML Foundations MOOC)

Introduction

Weakly-supervised: Learning without True Labels y_n

- positive-unlabeled: some of true $y_n = +1$ revealed
- complementary: 'not label' \overline{y}_n instead of true y_n
- noisy: noisy label y'_n instead of true y_n

weakly-supervised: a realistic and hot research direction to reduce labeling burden

[EN08] Learning classifiers from only positive and unlabeled data, KDD'08.

[Ish+17] Learning from complementary labels, NeurIPS'17.

[Nat+13] Learning with noisy labels, NeurIPS'13.

Chou et al.

Motivation

popular weakly-supervised models [DNS15; lsh+19; Pat+17]

- derive Unbiased Risk Estimators (URE) as new loss
- theoretically, nice properties (unbiased, consistent, etc.) [Ish+17]
- practically, sometimes bad performance (overfitting)

our contributions: on Learning with Complementary Labels (LCL)

- analysis: identify weakness of URE framework
- algorithm: propose an improved framework
- experiment: demonstrate stronger performance

next: introduction to LCL

[DNS15] Convex formulation for learning from positive and unlabeled data, ICML'15.

[Ish+19] Complementary-Label Learning for Arbitrary Losses and Models, ICML'19.

[Pat+17] Making deep neural networks robust to label noise: A loss correction approach, CVPR'17.

Chou et al.

Motivation behind Learning with Complementary Label

complementary label \overline{y}_n instead of true y_n

True Label

Complementary Label

Not "monkey"

Not "meerkat"

Not "prairie dog"

Figure 1 of [Yu+18]

complementary label: **easier/cheaper** to obtain for some applications

Introduction

Fruit Labeling Task (Image from AICup in 2020)

hard: true label	easy: complementary label	
 orange ? cherry mango ? banana 	 orange mango banana X 	

complementary: less labeling cost/expertise required

Chou et al.

Introduction

Comparison

Ordinary (Supervised) Learning

training:
$$\{(\mathbf{x}_n = \mathbf{x}_n, y_n = \text{mango})\} \rightarrow \text{classifier}$$

Complementary Learning

training:
$$\{(\mathbf{x}_n = \mathbf{x}_n, \overline{y}_n = \text{banana})\} \rightarrow \text{classifier}$$

testing goal: **classifier**(
$$\rightarrow$$
) \rightarrow cherry

ordinary versus complementary: same goal via different training data

Chou et al.

Learning with Complementary Labels Setup

Given

N examples (input \mathbf{x}_n , complementary label \overline{y}_n) $\in \mathcal{X} \times \{1, 2, \dots K\}$ in data set \mathcal{D} such that $\overline{y}_n \neq y_n$ for some hidden ordinary label $y_n \in \{1, 2, \dots K\}$.

Goal

a multi-class classifier $g(\mathbf{x})$ that closely predicts (0/1 error) the ordinary label *y* associated with some **unseen** inputs *x*

LCL model design: connecting complementary & ordinary

Unbiased Risk Estimation for LCL

Ordinary Learning

• empirical risk minimization (ERM) on training data

risk: $\mathbb{E}_{(\mathbf{x},y)}[\ell(y,g(\mathbf{x}))]$ empirical risk: $\mathbb{E}_{(\mathbf{x}_n,y_n)\in\mathcal{D}}[\ell(y_n,g(\mathbf{x}_n))]$

• loss ℓ : usually **surrogate** of 0/1 error

LCL [lsh+19]

• rewrite the loss ℓ to $\overline{\ell}$, such that

unbiased risk estimator: $\mathbb{E}_{(\mathbf{x},\overline{y})}[\overline{\ell}(\overline{y},g(\mathbf{x}))] = \mathbb{E}_{(\mathbf{x},y)}[\ell(y,g(\mathbf{x}))]$

• LCL by minimizing **URE**

URE: pioneer models for LCL

Chou et al.

Example of URE

Cross Entropy Loss

for $g(\mathbf{x}) = \operatorname{argmax}_{k \in \{1,2,\dots,K\}} \boldsymbol{p}(k \mid \mathbf{x}),$

• ℓ_{CE} : derived by maximum likelihood as surrogate of 0/1

risk:
$$R(g; \ell_{CE}) = \mathbb{E}_{(\mathbf{x}, y)} \underbrace{(-\log(\mathbf{p}(y \mid \mathbf{x})))}_{\ell_{CE}}$$

ERM with URE: $\min_{p} \overline{R}$ with \mathbb{E} taken on \mathcal{D}

Chou et al.

Problems of URE

URE overfits on single label

$$\ell = -\log(\boldsymbol{p}(\boldsymbol{y} \mid \boldsymbol{x}))$$
$$\bar{\ell} = (K-1)\log(\boldsymbol{p}(\overline{\boldsymbol{y}} \mid \boldsymbol{x})) - \sum_{k=1}^{K}\log(\boldsymbol{p}(k \mid \boldsymbol{x}))$$

ordinary risk and URE very different

- $\ell > 0 \rightarrow$ ordinary risk non-negative
- small p(y
 | x) (often) → possibly very negative l
 empirical URE can be negative: only observing some but not all
 y
- negative empirical URE drags minimization towards overfitting

practical remedy: [lsh+19]

NN-URE: constrain emprical URE to be non-negative

how can we avoid negative empirical URE?

Chou et al.

Proposed Framework

Proposed Framework

Minimize Complementary 0/1

- Recall the goal: We minimize 0-1 loss instead of ℓ
- The unbiased estimator of R₀₁

$$\overline{\boldsymbol{R}}_{\overline{\boldsymbol{0}1}}: \quad \mathbb{E}_{\overline{\boldsymbol{y}}}[\overline{\ell}_{01}(\overline{\boldsymbol{y}},g(\mathbf{x}))] = \ell_{01}(\boldsymbol{y},g(\mathbf{x}))$$

• We denote $\overline{\ell}_{01}$ as the complementary 0-1 loss:

$$\overline{\ell}_{01}(\overline{y},g(\mathbf{x})) = \llbracket \overline{y} = g(\mathbf{x})
rbracket$$

Surrogate Complementary Loss (SCL)

- Surrogate loss to optimize $\overline{\ell}_{01}$
- Unify previous work as surrogates of $\overline{\ell}_{01}$ [Yu+18; Kim+19]

[[]Yu+18] Learning with biased complementary labels, ECCV'18.

[[]Kim+19] NInI: Negative learning for noisy labels, ICCV'19.

Negative Risk Avoided

Unbiased Risk Estimator (URE)

URE loss $\overline{\ell}_{CE}$ [Ish+19] from cross-entropy ℓ_{CE} ,

$$\overline{\ell}_{CE}(\overline{y}, g(\mathbf{x})) = \underbrace{(K-1)\log(\mathbf{p}(\overline{y} \mid \mathbf{x}))}_{\text{negative loss term}} - \sum_{j=1}^{K}\log(\mathbf{p}(j \mid \mathbf{x}))$$

can go negative.

Surrogate Complementary Loss (SCL)

another loss [Kim+19], a surrogate $\overline{\ell}_{01}$

$$\phi_{\mathsf{NL}}(\overline{y}, g(\mathbf{x})) = -\log(1 - \boldsymbol{p}(\overline{y} \mid \mathbf{x})))$$

remains non-negative.

Chou et al.

Illustrative Difference between URE and SCE

URE: Ripple effect of errors

- Theoretical motivation [Ish+17]
- Estimation step (E) amplifies approximation error (A) in $\overline{\ell}$

SCL: 'Directly' minimize complementary likelihood

- Non-negative loss ϕ
- Practically prevents ripple effect

Chou et al.

Classification Accuracy

Methods

- Unbiased risk estimator (URE) [Ish+19]
- 2 Non-negative correction methods on URE (NN) [Ish+19]
- Surrogate complementary loss (SCL)

Table: URE and NN are based on $\overline{\ell}$ rewritten from cross-entropy loss, while SCL is based on exponential loss $\phi_{\mathsf{EXP}}(\overline{y}, g(\mathbf{x})) = \exp(\mathbf{p}_{\overline{y}})$.

Data set + Model	URE	NN	SCL
MNIST + Linear	0.850	0.818	0.902
MNIST + MLP	0.801	0.867	0.925
CIFAR10 + ResNet	0.109	0.308	0.492
CIFAR10 + DenseNet	0.291	0.338	0.544

Gradient Analysis

Gradient Analysis

Gradient Direction of URE

- Very diverged directions on each \overline{y} to maintain unbiasedness
- Low correlation to the target ℓ_{01}

Gradient Direction of SCL

- Targets to minimum likelihood
 objective
- High correlation to the target $\overline{\ell}_{01}$

Figure: Illustration of URE

Gradient Estimation Error

Bias-Variance Decomposition

$$\mathsf{MSE} = \mathbb{E}[(\boldsymbol{f} - \boldsymbol{c})^2] \\ = \underbrace{\mathbb{E}[(\boldsymbol{f} - \boldsymbol{h})^2]}_{\mathsf{Bias}^2} + \underbrace{\mathbb{E}[(\boldsymbol{h} - \boldsymbol{c})^2]}_{\mathsf{Variance}}$$

Gradient Estimation

- **1** Ordinary gradient $\mathbf{f} = \nabla \ell(\mathbf{y}, \mathbf{g}(\mathbf{x}))$
- **2** Complementary gradient $\boldsymbol{c} = \nabla \overline{\ell}(\overline{y}, g(\mathbf{x}))$
- 3 Expected complementary gradient h

Bias-Variance Tradeoff

Findings

• SCL reduces variance by introducing small bias (towards \overline{y})

	Bias	Variance	MSE
URE	0	Big	Big
SCL	Small	Small	Small

Conclusion

Explain Overfitting of URE

- Unbiased method only do well in expectation
- Single fixed complementary label cause overfitting

Surrogate Complementary Loss (SCL)

- Minimum likelihood approach
- Avoids negative risk problem

Experiment Results

- SCL significantly outperforms other methods
- Introduce small bias for lower gradient variance

References

Marthinus Du Plessis, Gang Niu, and Masashi Sugiyama. "Convex formulation for learning from positive and unlabeled data". In: International Conference on Machine Learning. 2015, pp. 1386–1394.

Charles Elkan and Keith Noto. "Learning classifiers from only positive and unlabeled data". In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. 2008, pp. 213–220.

Takashi Ishida et al. "Complementary-Label Learning for Arbitrary Losses and Models". In: International Conference on Machine Learning. 2019, pp. 2971–2980.

Youngdong Kim et al. "NInl: Negative learning for noisy labels". In: Proceedings of the IEEE International Conference on Computer Vision. 2019, pp. 101–110.

Nagarajan Natarajan et al. "Learning with noisy labels". In: Advances in neural information processing systems. 2013, pp. 1196–1204.

Giorgio Patrini et al. "Making deep neural networks robust to label noise: A loss correction approach". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, pp. 1944–1952.

Xiyu Yu et al. "Learning with biased complementary labels". In: Proceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 68–83.