Solutions and Experiences from KDD Cup 2011 Track 1: A Linear Ensemble of Individual and Blended Models for Music Rating Prediction

Po-Lung Chen, Chen-Tse Tsai, Yao-Nan Chen, Ku-Chun Chou, Chun-Liang Li, Cheng-Hao Tsai, Kuan-Wei Wu, Yu-Cheng Chou, Chung-Yi Li, Wei-Shih Lin, Shu-Hao Yu, Rong-Bing Chiu, Chieh-Yen Lin, Chien-Chih Wang, Po-Wei Wang, Wei-Lun Su, Chen-Hung Wu, Tsung-Ting Kuo, Todd G. McKenzie, Ya-Hsuan Chang, Chun-Sung Ferng, Chia-Mau Ni, Hsuan-Tien Lin, Chih-Jen Lin and Shou-De Lin

National Taiwan University

What is KDD Cup?

Background

- an annual competition on KDD (knowledge discovery and data mining)
- organized by ACM SIGKDD, starting from 1997, now the most prestigious data mining competition
- usually lasts 3-4 months
- participants include famous research labs (IBM, AT&T) and top universities (Stanford, Berkeley)

Aim

- bridge the gap between theory and practice
- define the state-of-the-art

from

YAHOO!

Music Recommendation Systems

- host: Yahoo!
- 11 years of Yahoo! music data
- 2 tracks of competition
- official dates: March 15 to June 30
- 1878 teams submitted to track 1; 1854 teams submitted to track 2

NTU Team for KDD Cup 2011

- 3 faculties: Profs. Chih-Jen Lin, Hsuan-Tien Lin and Shou-De Lin
- 1 course (similar to what was done in 2010):
 Data Mining and Machine Learning: Theory and Practice
- 3 TAs and 19 students: most were inexperienced in music recommendation in the beginning
- official classes: April to June; actual classes: December to June

our motto: study state-of-the-art approaches and then **creatively improve them**

The Track 1 Problem (1/2)

Given Data

263 <i>M</i> examples (user <i>u</i> , item <i>i</i> , rating r_{ui} , date t_{ui} , time τ_{ui})						
• •	user		rating		time	
	1	21	10	102	23:52	
	1	213	90	1032	21:01	
	4	45	95	768	09:15	

- u, i: abstract IDs
- r_{ui}: integer between 0 and 100, mostly multiples of 10

Additional Information: Item Hierarchy

- track (46.85%)
- album (19.01%)
- artist (28.84%)
- genre (5.30%)

The Track 1 Problem (2/2)

Data Partitioned by Organizers

- training: 253M; validation: 4M; test (w/o rating): 6M
- per user, training < validation < test in time
 - \geq 20 examples total
 - 4 examples in validation; 6 in test
- fixed random half of test: leaderboard; another half: award decision

Goal

predictions $\hat{r}_{ui} \approx r_{ui}$ on the test set, measured by

$$\mathsf{RMSE} = \sqrt{\mathsf{average}(\hat{r}_{ui} - r_{ui})^2}$$

note: one submission allowed every eight hours

Three Properties of Track 1 Data

		track1	track ₂	album3	author ₄		genre,
_	user ₁	100	80	70	?	• • •	_
$\mathbf{R} = \mathbf{I}$	user ₂	-	0	?	80	• • •	_
	• • •					• • •	
	user _U	?	-	20	-	• • •	0
	user _U	?	-	20	-	• • •	0

similar to Netflix data, but with the following differences.....

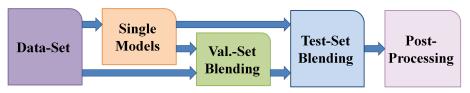
scale: larger data

training: study mature models that are computationally feasible

- taxonomy: relation graph of tracks, albums, authors and genres include as features for combining models nonlinearly
- time: detailed; training earlier than validation earlier than test

include as features for combining models nonlinearly; respect time-closeness during training

Framework of Our Solution



single models—computationally feasible models that are diverse:

- individual models: matrix factorization (& pPCA), pLSA
- residual models: R-Boltz. machine, k-NN
- derivative model: regression with statistical & model-based features
- validation-set blending: combine models nonlinearly while respecting time-closeness
- test-set blending: combine models linearly while fitting the leaderboard feedback
- post processing: polish predictions using findings during data analysis

RMSE Performance at Each Stage of Framework

- single models: 22.7915
 - individual models: best RMSE 22.9022 (MF)
 - residual models: best RMSE 22.7915 (k-NN + MF)
 - derivative model: best RMSE 24.1251 (but helps in later stages)
- validation-set blending: 21.3598 [improvement 1.4317]
- test-set blending: (estimated) 21.0253 [improvement 0.3345]
- post processing: 21.0147 [improvement 0.0106]

both blending stages: key to the system

Single Model: Matrix Factorization (1/2)

Basic Idea

 $\boldsymbol{R} \approx \hat{\boldsymbol{R}} = \boldsymbol{P}^{\mathcal{T}} \boldsymbol{Q}$ on the known examples

- \mathbf{P}^T : U (number of user) by F (number of factor) user-factor matrix
- Q: F (number of factor) by I (number of item) item-factor matrix
- one of the most commonly-used single models

Training

learn P and Q from data

$$\min_{\mathbf{P},\mathbf{Q}} \sum_{(u,i)\in \text{data}} \underbrace{\left(\hat{r}_{ui} - r_{ui}\right)^2}_{E_{ui}(\cdot)} \text{ s.t. } \hat{r}_{ui} = \mathbf{p}_u^T \mathbf{q}_i$$

- large-scale optimization tool: stochastic gradient descent (SGD)
 - \mathbf{O} randomly pick one example (u, i)
 - **2** $\mathbf{P} \leftarrow \mathbf{P} \eta \cdot \nabla E_{ui}(\mathbf{P})$ (similar for \mathbf{Q})

Single Model: Matrix Factorization (2/2)

Matrix Factorization Variants

$$\begin{array}{l} \underset{\mathbf{p},\mathbf{q},\cdots}{\text{min}} & \text{regularization} + \sum_{(u,i)\in\text{data}} \left(\hat{r}_{ui} - r_{ui}\right)^2 \\ \text{s.t.} & \hat{r}_{ui} = \mathbf{p}_u^T \mathbf{q}_i + \bar{r} + \mu_u^{\text{user}} + \mu_i^{\text{item}} + \sigma_i \cdot \frac{\delta}{\delta + (t_{ui} - t_i^{\text{begin}})} \end{array}$$

- extended terms (overall bias, user bias, item bias, time factor, etc.): enhance the power of model
- regularization: control the complexity of model
- parameter selection: tried Automatic Parameter Tuning tool

included many variants in the final solution for diversity

Selected Ideas that Worked (1/5): Time Emphasis in Stochastic Gradient Descent

Background

SGD for minimizing sum of per-example $E_{ui}(\mathbf{P})$:

• randomly pick one example (u, i)

• $\mathbf{P} \leftarrow \mathbf{P} - \eta \cdot \nabla E_{ui}(\mathbf{P})$

Idea

- last M steps of SGD: effectively considering only the last M examples picked—final P as if biased towards those
- need: P respects time-closeness to the test examples
- heuristic: deterministically pick the "newer" examples as last

consistent ≈ 0.05 RMSE improvement for MF

Single Model: Probabilistic Principle Component Analysis

Basic Idea

$$P(r|u,i) = \mathcal{N}(\mathbf{p}_{u}^{T}\mathbf{r}_{i} + \overline{r}_{u}, \sigma^{2})$$

- \overline{r}_u : user rating average
- can be viewed as probabilistic MF
- prediction \hat{r}_{ui} : expected rating over P(r|u, i)

Training

 Expectation Maximization (EM) over maximum likelihood formulation

very similar to MF in the final solution

Single Model: Probabilistic Latent Semantic Analysis

Basic Idea

$$P(r|u,i) = \sum_{\kappa=1}^{k} P(r|i,z=\kappa) P(z=\kappa|u).$$

z: the hidden variable representing user type

- can be viewed as another way of factorization
- prediction \hat{r}_{ui} : expected rating over P(r|u, i)

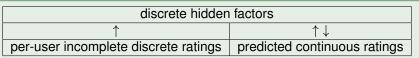
Training

- basic: EM over maximum likelihood formulation
- improvement: tempered EM—EM + annealing (0.468 RMSE improvement)

not strong individually, but quite different from MF solutions

Residual Model: Restricted Boltzmann Machine

Basic Idea



a recursive NNet

popularly used in Netflix competition

Training

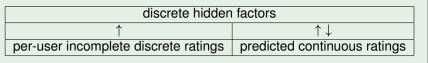
 find the fixed point of the NNet weights by contrastive divergence

> not better than MF individually, but can be used to process residuals (see below)

Selected Ideas that Worked (2/5): Gaussian RBM as Residual Model

Background

• RBM: a recursive NNet; can be used as an individual model by



as individual: RMSE 24.7433, worse than MF (22.9974)

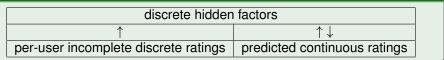
ldea

 MF (a first-order model) efficiently gets better performance, but can RBM digest something different?

• need: RBM that learns from the residuals of MF $r_{ui} - \hat{r}_{ui}^{MF}$ (continuous values)

Selected Ideas that Worked (2/5): Gaussian RBM as Residual Model

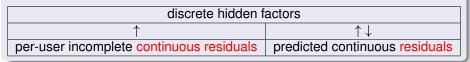
Background



Idea

need: RBM that learns from the residuals of MF

choice: Gaussian RBM (gRBM)



MF+gRBM: 22.8008;

better than individual MF (22.9974) or RBM (24.7433)

Residual Model: k-Nearest Neighbor

Basic Idea

$$\hat{r}_{ui} = \frac{\sum_{j \in G_k(u,i)} w_{ij} \cdot r_{uj}}{\sum_{j \in G_k(u,i)} w_{ij}}$$

- $G_k(u, i)$: item-neighbors of item *i* (for user *u*)
- *w_{ij}*: correlation between items *i* and *j*

Training

efficiently compute suitable neighbor and correlation functions

like RBM, not better than MF individually, but can be used to process residuals

Derivative Model: Regression

Basic Idea

$$\hat{r}_{ui} = g(\mathbf{x}_{ui})$$

- $\mathbf{x}_{ui} \in \mathbb{R}^d$: some features related to user *u* and item *i*
 - **statistical**: number of ratings from *u*, number of genre of item *i*, etc.
 - model: **p**_u in MF, w_{ij} in k-NN, etc.
- g: a regressor from \mathbb{R}^d to \mathbb{R}
 - linear regression
 - NNet
 - gradient boosting regression tree

can be flexibly used to include "side information" like hierarchy and time

Glance of Single Model RMSE

model	# used	best	average	worst	contribution
MF	81	22.90	23.92	26.94	0.3645
pPCA	2	24.46	24.61	24.75	0.0014
pLSA	7	24.83	25.53	26.09	0.0042
R-Boltz. machine	8	22.80	24.75	26.08	0.0314
<i>k</i> -NN	18	22.79	25.06	42.94	0.0298
regression	10	24.13	28.01	35.14	0.0261

- contribution (before val.-set blending): estimated RMSE diff. via leave-the-model-out in test-set blending
- MF: most important (absorbing pPCA)
- residual models: both quite important
- derivative model: individually weak but adds diversity

```
val.-set blending:
```

95 models, best 21.36, average 23.53, worst 31.70

Selected Ideas that Worked (3/5) in Val.-Set Blending: Multi-Feature and Multi-Stage Binned Lin. Reg.

Background

- Binned Linear Regression: a conditional aggregation model
- different model strength on different "types" of examples
- different blending weights for different types (bins) to utilize strength

bins	# rating $\leq \theta_1$	$\theta_1 < \# \text{ rating} \le \theta_2$	others
weight of MF-1	0.4	0.7	1.0
weight of RBM-1	0.5	0.1	0.0
weight of RBM-2	0.1	0.2	0.0

• a simplified regression tree with one level (on one feature)

Selected Ideas that Worked (3/5) in Val.-Set Blending: Multi-Feature and Multi-Stage Binned Lin. Reg.

Background

Binned Linear Regression
 —different blending weights for different (types) bins of examples

Idea: multi-feature BLR

- rationale: "type" more sophisticated than 1-feature bin
- a special multi-level decision tree
- prevent overfitting by limiting height and bin size
- heuristic algorithm instead of traditional decision tree: due to simplicity by extending from one-feature BLR

multi-feati	ure 1-featu	ire 4-feature	6-feature
RMSE	22.082	29 21.8605	21.8128

Selected Ideas that Worked (3/5) in Val.-Set Blending: Multi-Feature and Multi-Stage Binned Lin. Reg.

Background

Binned Linear Regression
 —different blending weights for different (types) bins of examples

Idea: multi-stage BLR

• rationale: more diverse but good models before test-set blending

bins	1	2	3
weight of MF-1			
weight of RBM-1			
weight of RBM-2			
weight of BLR-1			
weight of BLR-2			

multi-stage	1-stage	2-stage	3-stage
RMSE	21.7140	21.4591	21.4287

Solutions/Experiences from KDD Cup 2011

Selected Ideas that Worked (4/5) in Test-Set Blending: Offline Test Performance Predictor

Background

- given: columns \mathbf{z}_m = test-set prediction of model m
- test-set linear regression:

$$\mathbf{w}(\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_M, \lambda) = (\mathbf{Z}^T \mathbf{Z} + \lambda \mathbf{I})^{-1} \mathbf{Z}^T \mathbf{r}$$

• true ratings **r** unknown but $\mathbf{z}^T \mathbf{r}$ can be estimated by

$$2\mathbf{z}^{\mathsf{T}}\mathbf{r} = \mathbf{z}^{\mathsf{T}}\mathbf{z} + \mathbf{r}^{\mathsf{T}}\mathbf{r} - (\mathbf{z} - \mathbf{r})^{\mathsf{T}}(\mathbf{z} - \mathbf{r})$$

$$\approx \mathbf{z}^{\mathsf{T}}\mathbf{z} + N \cdot \mathsf{RMSE}(\mathbf{0})^2 - N \cdot \mathsf{RMSE}(\mathbf{z})^2$$

common technique for RMSE ever since Netflix competition

Selected Ideas that Worked (4/5) in Test-Set Blending: Offline Test Performance Predictor

Background

$$2\mathbf{z}^{\mathsf{T}}\mathbf{r} = \mathbf{z}^{\mathsf{T}}\mathbf{z} + \mathbf{r}^{\mathsf{T}}\mathbf{r} - (\mathbf{z} - \mathbf{r})^{\mathsf{T}}(\mathbf{z} - \mathbf{r})$$

$$\approx \mathbf{z}^{\mathsf{T}}\mathbf{z} + \mathbf{N} \cdot \mathsf{RMSE}(\mathbf{0})^{2} - \mathbf{N} \cdot \mathsf{RMSE}(\mathbf{z})^{2}$$

ldea

- want: decide which z_m's and λ to use
- restriction: one submission every eight hours
- solution: estimate RMSE of w without submitting more than z_m

$$N \cdot \text{RMSE}(\mathbf{w})^2 = (\mathbf{Z}\mathbf{w} - \mathbf{r})^T (\mathbf{Z}\mathbf{w} - \mathbf{r}) = \mathbf{w}^T \mathbf{Z}^T \mathbf{Z}\mathbf{w} - 2\mathbf{w}^T \mathbf{Z}^T \mathbf{r} + \mathbf{r}^T \mathbf{r}$$

compute the contribution of models;

choose 221 from \approx 300 models & decide $\lambda = 10^{-6}$ offline

Selected Ideas that Worked (5/5) in Post-Processing: Clipping for Old Four-Star Days

Background

- some very different rating systems observed during data analysis:
 - four-star rating? {0, 30, 50, 70, 90}
 - five-star rating? {0, 20, 40, 60, 80, 100}
 - 100-point scale
- suspect changes in the user interface of Yahoo! Music

Idea

existing: in five-star or 100-point scale, clip prediction to [0, 100]

- new: for four-star, clip prediction to [0, 90]
- what dates? [3365, 5982] (7 years) or [4281, 6170] (5 years)

 \approx 0.02 RMSE improvement on most models

Revisit: RMSE Performance at Each Stage of Framework

- single models: 22.7915
 - individual models: best RMSE 22.9022 (MF)
 - residual models: best RMSE 22.7915 (k-NN + MF)
 - derivative model: best RMSE 24.1251 (but helps in later stages)
- validation-set blending: 21.3598 [improvement 1.4317]
- test-set blending: (estimated) 21.0253 [improvement 0.3345]
- post processing: 21.0147 [improvement 0.0106]

both blending stages: key to the system

Selected Ideas that Did Not Work: Deal with Zero-Variance Users

Background

- zero-variance users (7% of all users)
 —if a user gives 60, 60, 60, ... in all training ratings, how'd she rate the next item?
- Occam's razor prediction: 60 —only true for 80% of users, 20% changed their mind!

Idea

- conditionally (the 80%) post-process the predictions
- difficult to distinguish and thus failed

Track 1 Mini-Summary

individual models

- single: MF (& pPCA), pLSA
- residual: RBM, k-NN
- derivative: regression
- -concept of diversity important
- blending
 - validation: deeply and non-linear to improve model power
 - test: broadly and linear to use leaderboard feedback properly (with good estimation)

Next: Track 2 by Prof. Shou-De Lin

