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Breast Cancer Screening

http://en.wikipedia.org/wiki/File:Mammo_breast_cancer.jpg

• input: X-ray images
• output: healthy (left) or breast cancer (right)
• unbalanced: many healthy (negative), few cancerous (positive)
• learning a good model: important

—part of KDDCup 2008 task

to eliminate false positive:

ask human experts to verify (confirm) all positive predictions
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What If Too Many Positive Predictions?

inputpositive predictions
human
experts

output verified instances

if human experts cannot handle all positive instances from model
• hire more human experts (but money?)
• random sampling (but false positive?)

another possibility: ‘learn’ a verification assistant (verifier)
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Learner versus Verifier

inputinstances

verifier

learner

human
experts

output verified instances

label query

label

model

verification query

two stages similarly require human (labeling):

learning and verification

—save human efforts by combining the two?
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Motivation: One-Dimensional Separable Data
m instances on a line
• approach 1: binary search for learning, then do verification
• approach 2: greedily do verification according to current model

+ + + - - - - - -

init init

number of queries ‘wasted’ on negative instances
• approach 1: O(log m)

• approach 2: O(1)
—combining may help
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Interactive Verification Problem
• instances: X = {x1, ..., xm}
• unknown labels: Y (xi) ∈ {−1,+1}
• in iteration t = 1,2, · · · ,T :

select a different instance qt from X to query Y (qt)

inputinstances
interactive

verifier
human
experts

output verified instances

query

feedback

goal: maximize
∑T

t=1[Y (qt) = 1]
—verify as many positive instances as possible within T queries
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Our Contribution

inputinstances
interactive

verifier
human
experts

output verified instances

query

feedback

an initiative to study interactive verification, which ...
• introduces a simple framework for designing

interactive verification approaches
• connects interactive verification with other related

ML problems
• exploits the connection to design promising

approaches with superior experimental results
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Simple Framework for Interactive Verification

inputinstances
interactive

verifier
human
experts

output verified instances

query

feedback

For t = 1, ...,T :
1 train a model by a base learner with all labeled data (qi ,Y (qi))

—will consider linear SVM and denote weights by wt

2 compute a scoring function S(xi ,wt) for each instance xi ∈ X
3 query a different instance with highest score

different scoring functions⇔ different approaches
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Greedy

+ + + - - - - - -

init init

• greedy: the ‘most’ positive one is the most suspicious one

S(xi ,wt) = xᵀ
i wt

—verify greedily!
• same as approach 2 in motivating one-dimensional data

how to correct sampling bias with greedy queries?
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Random Then Greedy (RTG)

• random sampling for learning first
• greedy for verification later
• RTG: one-time switching with parameter ε

S(xi ,wt) =

{
random(), if t ≤ εT
xᵀ

i wt , otherwise

how to learn faster than random sampling?
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Uncertainty Sampling Then Greedy (USTG)
• active learning: similar to interactive verification with different

goals

inputinstances
active
learner

human
experts

output model

query

label

• USTG: active learning (by uncertainty sampling) first, greedy for
verification later

S(xi ,wt) =

{
1

|xᵀ
i wt |+1 , if t ≤ εT

xᵀ
i wt , otherwise

how to do better than one-time switching?
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Another Related Problem: Contextual Bandit

inputcontext
contextual

bandit
learner

environment

output total reward

action

reward
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interactive

verifier
human
experts

output verified instances

query

feedback

interactive verification
= special contextual bandit + verified instances as rewards
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Upper Confidence Bound (UCB)

interactive verification
= special contextual bandit + verified instances as rewards

• contextual bandit: balance exploration (getting information) and
exploitation (getting reward)

• interactive verification: balance learning and verification
• UCB: borrow idea from a popular contextual bandit algorithm

S(xi ,wt) = xᵀ
i wt + α · confidence on xi

• α: trade-off parameter between exploration (learning) and
exploitation (verification)

four approaches to be studied: greedy, RTG, USTG, UCB
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Comparison between the Four

learning intent verification intent switching
greedy none positiveness none
RTG random sampling positiveness one-time

USTG active learning positiveness one-time
UCB confidence term positiveness dynamic

greedy: special case of RTG (ε = 0), USTG (ε = 0), UCB (α = 0)
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Data Sets

data set number of instances number of positive instances percentage of positive instances
KDDCup2008 102294 623 0.6%
spambase 4601 1813 39.4%
a1a 1605 395 24.6%
cod-rna 59535 19845 33.3%
mushrooms 8124 3916 48.2%
w2a 3470 107 3%

—resampled with 1000 negative and P positive instances

will show
1
P

T∑
t=1

[Y (qt) = 1]

under T = 100
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Effect of ε
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(a) KDDCup2008 with P = 100
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(b) KDDCup2008 with P = 50

‘naive’ greedy (ε = 0) better than RTG and USTG, why?
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Good Properties of Greedy

Case 1: positive instance selected
• successful verification :-)

Case 2: negative instance selected
• ‘most unexpected’ negative instance
• usually help learning a lot :-)

greedy approach happy ‘:-)’ either way
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Artificial Data that Fails Greedy
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• two positive clusters and
one big negative cluster

• greedy ignores bottom
cluster: negative
instances selected
doesn’t help learning

need to query ‘far-away’ (less confident) instances
—UCB to the rescue
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Comparison between UCB and Greedy

P = 50 KDDCup2008 spambase a1a
UCB (α = 0.2) 0.5968 ± 0.0031 0.7306 ± 0.0020 0.3915 ± 0.0034

greedy 0.5868 ± 0.0040 0.7467 ± 0.0024 0.3883 ± 0.0034
comparison © × 4

P = 50 cod-rna mushrooms w2a
UCB (α = 0.2) 0.7333 ± 0.0024 0.9776 ± 0.0007 0.6160 ± 0.0024

greedy 0.7249 ± 0.0027 0.9710 ± 0.0014 0.5944 ± 0.0030
comparison © © ©

UCB wins (©) often, across data sets and P
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Conclusion

• formulated a novel problem of interactive verification
• connected the problem to active learning and contextual bandit
• studied a simple solution greedy
• proposed a promising solution UCB via contextual bandit
• validated that greedy and UCB lead to promising performance

Chou & Lin (NTU CSIE) Machine Learning Approaches for Interactive Verification 19/20



Self-Advertisement: TAAI 2014 in Taipei
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