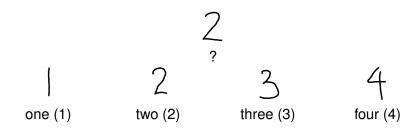
A Simple Algorithm for Cost-Sensitive Classification

Hsuan-Tien Lin

Dept. of CSIE, NTU

Department Seminar Talk, 09/19/2008

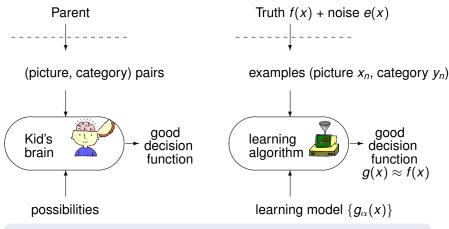
Which Digit Did You Write?



a classification problem
 grouping "pictures" into different "categories"

How can machines learn to classify?

Supervised Machine Learning



challenge:

see only $\{(x_n, y_n)\}$ without knowing f(x) or e(x)

 $\stackrel{?}{\Longrightarrow}$ generalize to unseen (x, y) w.r.t. f(x)

Mis-prediction Costs $(g(x) \approx f(x)?)$

2

- ZIP code recognition:
 - 1: wrong; 2: right; 3: wrong; 4: wrong
- check value recognition:
 - 1: one-dollar mistake: 2: no mistake:
 - 3: one-dollar mistake: 4: two-dollar mistake
- evaluation by formation similarity:
 - 1: not very similar; 2: very similar;
 - 3: somewhat similar; 4: a silly prediction

different applications evaluate mis-predictions differently

ZIP Code Recognition

2

1: wrong; 2: right; 3: wrong; 4: right

- regular classification problem: only right or wrong
- wrong cost: 1; right cost: 0
- prediction error of g on some (x, y):

classification cost = $[y \neq g(x)]$

regular classification: well-studied, many good algorithms

Check Value Recognition

2

1: one-dollar mistake; 2: no mistake; 3: one-dollar mistake; 4: **two**-dollar mistake

- cost-sensitive classification problem: different costs for different mis-predictions
- prediction error of g on some (x, y):

absolute cost =
$$|y - g(x)|$$

cost-sensitive classification: new, need more research

Which Age-Group?

infant (1)

child (2)

teen (3)

adult (4)

- small mistake—classify a child as a teen;
 big mistake—classify an infant as an adult
- prediction error of g on some (x, y):

$$\mathcal{C}(y,g(x)), ext{ where } \mathcal{C} = egin{pmatrix} 0 & 1 & 4 & 5 \ 1 & 0 & 1 & 3 \ 3 & 1 & 0 & 2 \ 5 & 4 & 1 & 0 \end{pmatrix}$$

C: cost matrix

Cost Matrix C

regular classification

$$C = \text{classification cost } C_c: \\ \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

cost-sensitive classification

$$C$$
 = anything other than C_c :
$$\begin{pmatrix} 0 & 1 & 4 & 5 \\ 1 & 0 & 1 & 3 \\ 3 & 1 & 0 & 2 \\ 5 & 4 & 1 & 0 \end{pmatrix}$$

regular classification:

special case of cost-sensitive classification

Cost-Sensitive Binary Classification (1/2)

medical profile x?

medical profile x_1 m

SARS (1)

medical profile x_2 NOSARS (2)

- predicting SARS as NOSARS: serious consequences to public health
- predicting NOSARS as SARS: not good, but less serious
- cost-sensitive C: $\begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix}$
- regular C_c : $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

how to change the entry from 1 to 1000?

Cost-Sensitive Binary Classification (2/2)

copy each case labeled SARS 1000 times

original problem evaluate w/ $\begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} x_1, SARS \\ (x_2, NOSARS) \\ (x_3, NOSARS) \\ (x_4, NOSARS) \\ (x_5, SARS) \end{pmatrix}$

equivalent problem

evaluate
$$w / \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $(x_1, SARS), \dots, (x_1, SARS)$
 $(x_2, NOSARS)$
 $(x_3, NOSARS)$
 $(x_4, NOSARS)$
 $(x_5, SARS), \dots, (x_5, SARS)$

```
mathematically:  \begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1000 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
```

Our Contribution

	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny, 2003)	ongoing (our work, among others)

a theoretical and algorithmic study of cost-sensitive classification, which ...

- introduces a methodology for extending regular classification algorithms to cost-sensitive ones with any cost
- provides strong theoretical support for the methodology
- leads to some promising algorithms with superior experimental results

will describe the methodology and a concrete algorithm

Key Idea: Cost Transformation

$$\underbrace{\begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix}}_{\mathcal{C}} = \underbrace{\begin{pmatrix} 1000 & 0 \\ 0 & 1 \end{pmatrix}}_{\text{\# of copies}} \cdot \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{\mathcal{C}_c}$$

$$\underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 3 & 2 & 3 & 4 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{\mathcal{C}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{mixture weights } Q} \cdot \underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{\mathcal{C}_c}$$

• split the cost-sensitive example:

 \implies a mixture of regular examples $\{(x,1),(x,2),(x,2),(x,3)\}$ or a weighted mixture $\{(x,1,1),(x,2,2),(x,3,1)\}$

why split?

Cost Equivalence by Splitting

$$\underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 3 & 2 & 3 & 4 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{\mathcal{C}} = \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{mixture weights } \mathcal{Q}} \cdot \underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{\mathcal{C}_{\mathcal{C}}}$$

- (x,2) $\Rightarrow \text{ a weighted mixture } \{(x,1,1),(x,2,2),(x,3,1)\}$
- cost equivalence: for any classifier g,

$$C(y,g(x)) = \sum_{\ell=1}^K Q(y,\ell) \left[\ell \neq g(x) \right]$$

 \min_g expected LHS (original cost-sensitive problem) = \min_g expected RHS (a regular problem when $Q(y, \ell) \ge 0$)

Cost Transformation Methodology: Preliminary

- split each training example (x_n, y_n) to a weighted mixture $\{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^K$
- ② apply regular classification algorithm on the weighted mixtures $\bigcup_{n=1}^{N} \{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$
- by cost equivalence,
 good g for new regular classification problem
 good g for original cost-sensitive classification problem
- regular classification: needs $Q(y_n, \ell) \ge 0$

but what if $Q(y_n, \ell)$ negative?

Similar Cost Vectors

$$\underbrace{\begin{pmatrix} 1 & 0 & 1 & 2 \\ 3 & 2 & 3 & 4 \end{pmatrix}}_{\text{costs}} = \underbrace{\begin{pmatrix} 1/3 & 4/3 & 1/3 & -2/3 \\ 1 & 2 & 1 & 0 \end{pmatrix}}_{\text{mixture weights } Q(y, \ell)} \cdot \underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{\text{classification costs}}$$

- negative $Q(y, \ell)$: cannot split
- but $\hat{\mathbf{c}} = (1, 0, 1, 2)$ is **similar** to $\mathbf{c} = (3, 2, 3, 4)$: for any classifier g,

$$\hat{\mathbf{c}}[g(x)] + \text{constant} = \mathbf{c}[g(x)] = \sum_{\ell=1}^{K} Q(y,\ell) \left[\ell \neq g(x)\right]$$

constant can be dropped during minimization

 $\min_g \operatorname{expected} \hat{\mathcal{C}}(y, g(x))$ (original cost-sensitive problem) = $\min_g \operatorname{expected} \operatorname{RHS}$ (regular problem w/ $Q \ge 0$)

Cost Transformation Methodology: Revised

- shift each row of original cost $\hat{\mathcal{C}}$ to a similar and "splittable" $\mathcal{C}(y,:)$
- split (x_n, y_n) to a weighted mixture $\{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^K$ with \mathcal{C}
- **3** apply regular classification algorithm on the weighted mixtures $\bigcup_{n=1}^{N} \{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$
- splittable: $Q(y_n, \ell) \ge 0$
- by cost equivalence after shifting:
 - $\operatorname{good} g$ for new regular classification problem
 - = good g for original cost-sensitive classification problem

but infinitely many similar and splittable C!

Uncertainty in Mixture

- a single example {(x,2)}
 —certain that the desired label is 2
- a mixture $\{(x,1,1),(x,2,2),(x,3,1)\}$ sharing the same x—uncertainty in the desired label (25%: 1,50%: 2,25%: 3)
- over-shifting adds unnecessary mixture uncertainty:

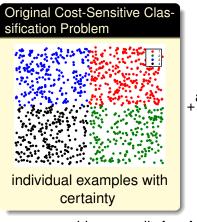
$$\underbrace{\begin{pmatrix} 3 & 2 & 3 & 4 \\ 33 & 32 & 33 & 34 \end{pmatrix}}_{\text{costs}} = \underbrace{\begin{pmatrix} 1 & 2 & 1 & 0 \\ 11 & 12 & 11 & 10 \end{pmatrix}}_{\text{mixture weights}} \cdot \underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{C_{2}}$$

should choose a similar and splittable **c** with **minimum mixture uncertainty**

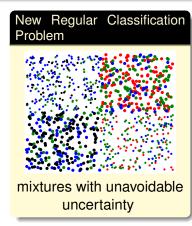
Cost Transformation Methodology: Final

- shift original cost \hat{C} to a similar and splittable C with minimum "mixture uncertainty"
- split (x_n, y_n) to a weighted mixture $\{(x_n, \ell, Q(y_n, \ell))_{\ell=1}^K \text{ with } \mathcal{C}$
- 3 apply regular classification algorithm on the weighted mixtures $\bigcup_{n=1}^{N} \{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$
- mixture uncertainty: entropy of each normalized Q(y,:)
- ullet a simple and unique optimal shifting exists for every $\hat{\mathcal{C}}$
 - good *g* for new regular classification problem = good *g* for original cost-sensitive classification problem

Unavoidable (Minimum) Uncertainty



+ absolute =



new problem usually harder than original one

need robust regular classification algorithm to deal with uncertainty

Making a Classification Algorithm Robust

One-Versus-One: A Popular Classification Meta-Method

- for a pair (i, j), take all examples (x_n, y_n) that $y_n = i$ or j (original one-versus-one)
- of or a pair (i,j), from each weighted mixture $\{(x_n,\ell,q_\ell)\}$ with $q_i>q_j$, keep (x_n,i) with weight (q_i-q_j) ; vice versa (robust one-versus-one)
- \odot train a binary classifier $g^{(i,j)}$ using those examples
- repeat the previous two steps for all different (i, j)
- **5** predict using the votes from $g^{(i,j)}$
- un-shifting inside the meta-method to remove uncertainty
- robust step makes it suitable for cost transformation methodology

cost-sensitive one-versus-one: cost transformation + robust one-versus-one

Cost-Sensitive One-Versus-One (CSOVO)

- for a pair (i,j), transform all examples (x_n,y_n) to $\left(x_n, \underset{k \in \{i,j\}}{\operatorname{argmin}} \mathcal{C}(y_n,k)\right)$ with weight $\left|\mathcal{C}(y_n,i) \mathcal{C}(y_n,j)\right|$
- $oldsymbol{2}$ train a binary classifier $g^{(i,j)}$ using those examples
- \odot repeat the previous two steps for all different (i,j)
- $oldsymbol{4}$ predict using the votes from $g^{(i,j)}$
- comes with good theoretical guarantee:

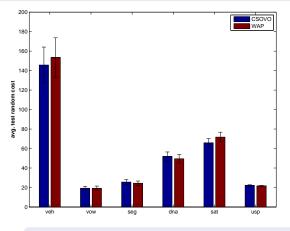
test cost of final classifier
$$\leq$$
 2 $\sum_{i < j}$ test cost of $g^{(i,j)}$

• simple, efficient, and takes original OVO as special case

another success:

cost-sensitive one-versus-all (Lin, 2008)

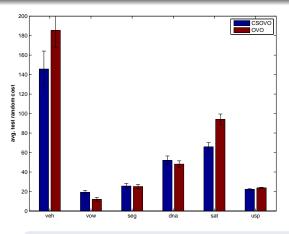
CSOVO v.s. WAP



- a general cost-sensitive setup with "random" cost
- WAP (Abe et al., 2004): related to CSOVO, but more complicated and slower
- couple both meta-methods with SVM

CSOVO simpler, faster, with similar performance
—a preferable choice

CSOVO v.s. OVO



- OVO: popular regular classification meta-method, NOT cost-sensitive
- couple both meta-methods with SVM

CSOVO often better suited for cost-sensitive classification

Conclusion

- cost transformation methodology:
 makes any (robust) regular classification algorithm cost-sensitive
- theoretical guarantee: cost equivalence
- algorithmic use: a novel and simple algorithm CSOVO
- experimental performance of CSOVO: superior

many more cost-sensitive algorithms can be designed similarly