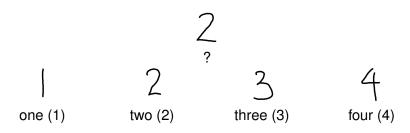
Cost-sensitive Multiclass Classification Using One-versus-one Comparisons

Hsuan-Tien Lin

Dept. of CSIE, NTU

Talk at NTHU EE, 04/09/2010

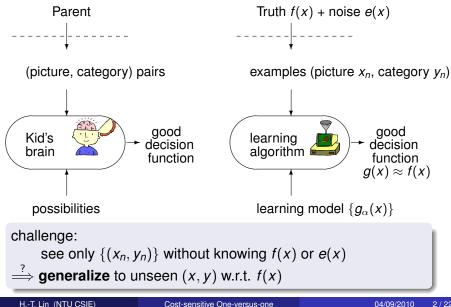
Which Digit Did You Write?



• a **classification** problem

—grouping "pictures" into different "categories"

How can machines learn to classify?



Mis-prediction Costs $(g(x) \approx f(x)?)$

- ZIP code recognition:
 - 1: wrong; 2: right; 3: wrong; 4: wrong
- check value recognition:
 - 1: one-dollar mistake; 2: no mistake;
 - 3: one-dollar mistake; 4: two-dollar mistake
- evaluation by formation similarity:
 - 1: not very similar; 2: very similar;
 - 3: somewhat similar; 4: a silly prediction

different applications evaluate mis-predictions differently

ZIP Code Recognition

2

1: wrong; 2: right; 3: wrong; 4: right

- regular classification problem: only right or wrong
- wrong cost: 1; right cost: 0
- prediction error of *g* on some (*x*, *y*):

classification cost = $[\![y \neq g(x)]\!]$

regular classification: well-studied, many good algorithms

Check Value Recognition

1: one-dollar mistake; 2: no mistake; 3: one-dollar mistake; 4: **two**-dollar mistake

- cost-sensitive classification problem: different costs for different mis-predictions
- e.g. prediction error of *g* on some (*x*, *y*):

absolute cost = |y - g(x)|

cost-sensitive classification: **new**, need more research

Cost-Sensitive Classification

Which Age-Group?

?

infant (1)

child (2)

teen (3)

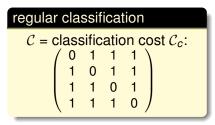
- small mistake—classify a child as a teen; big mistake—classify an infant as an adult
- prediction error of *g* on some (*x*, *y*):

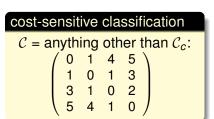
$$\mathcal{C}(y, g(x)), ext{ where } \mathcal{C} = egin{pmatrix} 0 & 1 & 4 & 5 \ 1 & 0 & 1 & 3 \ 3 & 1 & 0 & 2 \ 5 & 4 & 1 & 0 \end{pmatrix}$$

$\mathcal{C} \text{: cost matrix}$

H.-T. Lin (NTU CSIE)

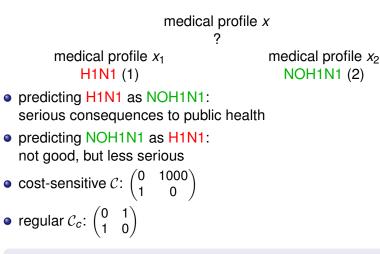
Cost Matrix C





regular classification: special case of cost-sensitive classification **Cost-Sensitive Classification**

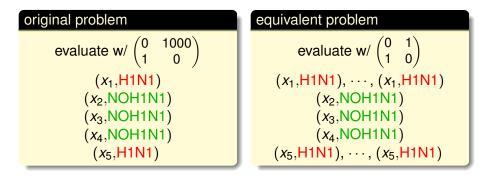
Cost-Sensitive Binary Classification (1/2)



how to change the entry from 1 to 1000?

Cost-Sensitive Binary Classification (2/2)

copy each case labeled H1N1 1000 times



mathematically: $\begin{pmatrix} 0 & 1000 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1000 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

H.-T. Lin (NTU CSIE)

Cost-sensitive One-versus-one

Our Contribution

	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny, 2003)	ongoing (our work, among others)

a theoretical and algorithmic study of cost-sensitive classification, which ...

- introduces a methodology for extending regular classification algorithms to cost-sensitive ones with any cost
- provides strong theoretical support for the methodology
- leads to some promising algorithms with superior experimental results

will describe the methodology and a concrete algorithm

H.-T. Lin (NTU CSIE)

Cost-sensitive One-versus-one

Cost Transformation Methodology

Key Idea: Cost Transformation

$$\underbrace{\begin{pmatrix} 0 & 1000 \\ 1 & 0 \\ C \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} 1000 & 0 \\ 0 & 1 \\ \end{pmatrix}}_{\# \text{ of copies}} \cdot \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ C \\ C \\ C \\ \end{bmatrix}}_{C_{c}}$$

• **split** the cost-sensitive example:

(*x*, 2)

 \implies a mixture of regular examples $\{(x, 1), (x, 2), (x, 2), (x, 3)\}$

or a weighted mixture $\{(x, 1, 1), (x, 2, 2), (x, 3, 1)\}$

why split?

H.-T. Lin (NTU CSIE)

Cost Transformation Methodology

Cost Equivalence by Splitting

- (*x*, 2)
 - \implies a weighted mixture {(x, 1, 1), (x, 2, 2), (x, 3, 1)}
- cost equivalence: for any classifier g,

$$\mathcal{C}(y,g(x)) = \sum_{\ell=1}^{K} Q(y,\ell) \llbracket \ell \neq g(x) \rrbracket$$

 $\begin{array}{ll} \min_g \text{ expected LHS} & (\text{original cost-sensitive problem}) \\ = & \min_g \text{ expected RHS} & (\text{a regular problem when } Q(y, \ell) \geq 0) \end{array}$

Cost Transformation Methodology: Preliminary

Cost Transformation Methodology

• split each training example (x_n, y_n) to a weighted mixture $\{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$

apply regular classification algorithm on the weighted mixtures $\bigcup_{n=1}^{N} \{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$

by cost equivalence,

good g for new regular classification problem

- = good *g* for original cost-sensitive classification problem
- regular classification: needs $Q(y_n, \ell) \ge 0$

but what if $Q(y_n, \ell)$ negative?

Similar Cost Vectors

$$\underbrace{\begin{pmatrix} 1 & 0 & 1 & 2 \\ 3 & 2 & 3 & 4 \end{pmatrix}}_{\text{costs}} = \underbrace{\begin{pmatrix} 1/3 & 4/3 & 1/3 & -2/3 \\ 1 & 2 & 1 & 0 \end{pmatrix}}_{\text{mixture weights } Q(y, \ell)} \cdot \underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{\text{classification costs}}$$

• negative $Q(y, \ell)$: cannot split

$$\hat{\mathbf{c}}[g(x)] + ext{constant} = \mathbf{c}[g(x)] = \sum_{\ell=1}^{K} Q(y,\ell) \, \llbracket \ell
eq g(x)
rbracket$$

• constant can be dropped during minimization

 $\begin{array}{rl} \min_g \text{ expected } \hat{\mathcal{C}}(y,g(x)) & (\text{original cost-sensitive problem}) \\ = & \min_g \text{ expected RHS} & (\text{regular problem w/ } Q \geq 0) \end{array}$

H.-T. Lin (NTU CSIE)

Cost Transformation Methodology: Revised

Cost Transformation Methodology

shift each row of original cost Ĉ to a similar and "splittable" C(y, :)

2 split (x_n, y_n) to a weighted mixture $\{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$ with C

• apply regular classification algorithm on the weighted mixtures $\bigcup_{n=1}^{N} \{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$

• splittable: $Q(y_n, \ell) \ge 0$

• by cost equivalence after shifting:

good g for new regular classification problem

good g for original cost-sensitive classification problem

but infinitely many similar and splittable \mathcal{C} !

H.-T. Lin (NTU CSIE)

Cost Transformation Methodology Uncertainty in Mixture

- a single example {(x, 2)}
 —certain that the desired label is 2
- a mixture {(x, 1, 1), (x, 2, 2), (x, 3, 1)} sharing the same x
 —uncertainty in the desired label (25%: 1,50%: 2,25%: 3)
- over-shifting adds unnecessary mixture uncertainty:

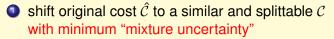
$$\underbrace{\begin{pmatrix} 3 & 2 & 3 & 4 \\ 33 & 32 & 33 & 34 \end{pmatrix}}_{\text{costs}} = \underbrace{\begin{pmatrix} 1 & 2 & 1 & 0 \\ 11 & 12 & 11 & 10 \end{pmatrix}}_{\text{mixture weights}} \cdot \underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{\mathcal{C}_{c}}$$

should choose a similar and splittable **c** with **minimum mixture uncertainty**

H.-T. Lin (NTU CSIE)

Cost-sensitive One-versus-one

Cost Transformation Methodology: Final



2 split (x_n, y_n) to a weighted mixture $\{(x_n, \ell, Q(y_n, \ell)\}_{\ell=1}^{K} \text{ with } C$

● apply regular classification algorithm on the weighted mixtures $\bigcup_{n=1}^{N} \{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$

- mixture uncertainty: entropy of each normalized Q(y,:)
- a simple and unique optimal shifting exists for every $\hat{\mathcal{C}}$

good g for new regular classification problem = good g for original cost-sensitive classification problem

From OVO to CSOVO

One-Versus-One: A Popular Classification Meta-Method

- for a pair (*i*, *j*), take all examples (*x_n*, *y_n*) that *y_n* = *i* or *j*
- 2 train a binary classifier $g^{(i,j)}$ using those examples
- **③** repeat the previous two steps for all different (i, j)
- predict using the votes from $g^{(i,j)}$

cost-sensitive one-versus-one: cost transformation + one-versus-one

Cost-Sensitive One-Versus-One (CSOVO)

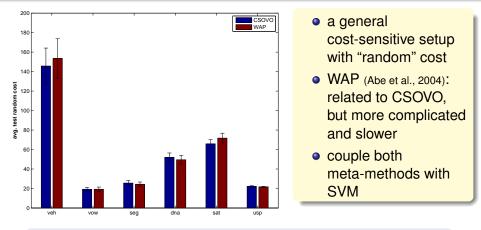
• comes with good theoretical guarantee:

test cost of final classifier $\leq 2\sum_{i < j}$ test cost of $g^{(i,j)}$

simple, efficient, and takes original OVO as special case

Experimental Performance

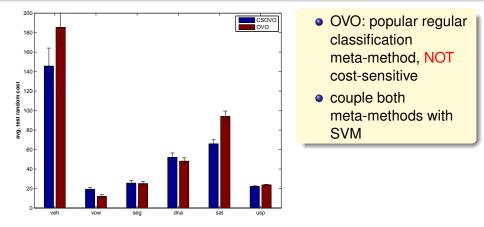
CSOVO v.s. WAP



CSOVO simpler, faster, with similar performance —a preferable choice

Experimental Performance

CSOVO v.s. OVO



CSOVO often better suited for cost-sensitive classification

H.-T. Lin (NTU CSIE)

04/09/2010 21 / 22

- **cost transformation** methodology: makes **any** (robust) regular classification algorithm cost-sensitive
- theoretical guarantee: cost equivalence
- algorithmic use: a novel and simple algorithm CSOVO
- experimental performance of CSOVO: superior

many more cost-sensitive algorithms can be designed similarly