Cost-sensitive Multiclass Classification Using One-versus-one Comparisons

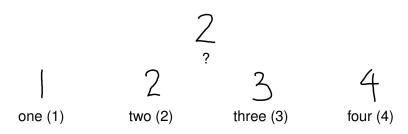
Hsuan-Tien Lin

Assistant Professor Dept. of Computer Science and Information Engineering National Taiwan University

Talk at ICISE2, 06/24/2012

Based on the technical report "A Simple Cost-sensitive Multiclass Classification Algorithm Using One-versus-one Comparisons", Lin 2010.

Cost-Sensitive Classification Which Digit Did You Write?



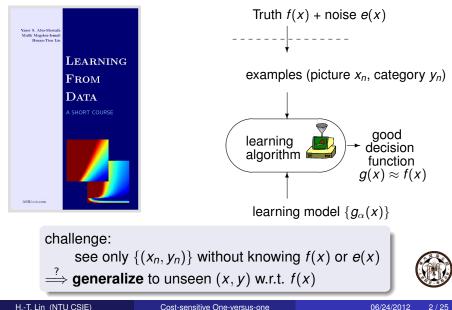
• a **classification** problem

–grouping "pictures" into different "categories"

How can machines learn to classify?

Cost-Sensitive Classification

Learning from Data (Abu-Mostafa, Magdon-Ismail and Lin, 2012)



Cost-Sensitive Classification

Mis-prediction Costs $(g(x) \approx f(x)?)$

?

- ZIP code recognition:
 - 1: wrong; 2: right; 3: wrong; 4: wrong
- check value recognition:
 - 1: one-dollar mistake; 2: no mistake;
 - 3: one-dollar mistake; 4: two-dollar mistake
- evaluation by formation similarity:
 - 1: not very similar; 2: very similar;
 - 3: somewhat similar; 4: a silly prediction

different applications evaluate mis-predictions differently

ZIP Code Recognition

- regular classification problem: only right or wrong
- wrong cost: 1; right cost: 0
- prediction error of *g* on some (*x*, *y*):

```
classification cost = [\![y \neq g(x)]\!]
```

regular classification: **well-studied**, many good algorithms

Cost-Sensitive Classification

Check Value Recognition

2

- 1: one-dollar mistake; 2: no mistake; 3: one-dollar mistake; 4: **two**-dollar mistake
- cost-sensitive classification problem: different costs for different mis-predictions
- e.g. prediction error of g on some (x, y):

absolute cost = |y - g(x)|

cost-sensitive classification: **new**, need more research

Cost-Sensitive Classification

What is the Status of the Patient?

H1N1-infected

0

cold-infected

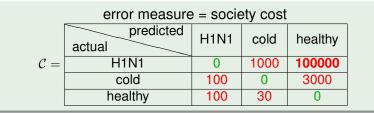
healthy

 another classification problem —grouping "patients" into different "status"

Are all mis-prediction costs equal?

H.-T. Lin (NTU CSIE)

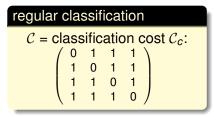
Cost-Sensitive Classification Patient Status Prediction



- H1N1 mis-predicted as healthy: very high cost
- o cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; can computer-aided diagnosis do the same?

Cost Matrix C



cost-sensitive classification $C = anything other than C_c: \begin{pmatrix} 0 & 1 & 4 & 5 \\ 1 & 0 & 1 & 3 \\ 3 & 1 & 0 & 2 \\ 5 & 4 & 1 & 0 \end{pmatrix}$

regular classification: special case of cost-sensitive classification

Cost-sensitive Classification Setup

Given

N examples, each (input x_n , label y_n) $\in \mathcal{X} \times \{1, 2, ..., K\} \times R^K$; cost matrix C

- *K* = 2: binary; *K* > 2: multiclass
- will assume $C(y, y) = \min_{1 \le k \le K} C(y, k)$

Goal

a classifier g(x) that pays a small cost C(y, g(x)) on future **unseen** example (x, y)

cost-sensitive classification: more realistic than regular one

Our Contribution

	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny, 2003)	ongoing (our work, among others)

a theoretical and algorithmic study of cost-sensitive classification, which ...

- introduces a methodology for extending regular classification algorithms to cost-sensitive ones with any cost
- provides strong theoretical support for the methodology
- leads to some promising algorithms with superior experimental results

will describe the methodology and a concrete algorithm

H.-T. Lin (NTU CSIE)

Central Idea: Reduction

complex cost-sensitive problems

simpler regular classification problems with well-known results on models, algorithms, and theories

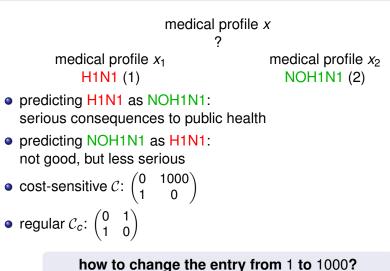
(cassette player)

If I have seen further it is by standing on the shoulders of Giants—I. Newton

H.-T. Lin (NTU CSIE)

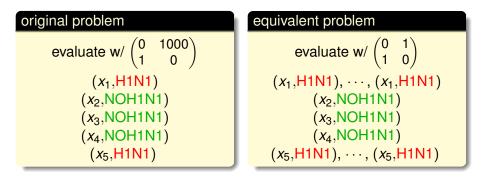
Cost-Sensitive Classification

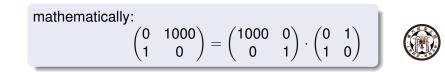
Cost-Sensitive Binary Classification (1/2)



Cost-Sensitive Binary Classification (2/2)

copy each case labeled H1N1 1000 times





H.-T. Lin (NTU CSIE)

Cost Transformation Methodology

Key Idea: Cost Transformation

• **split** the cost-sensitive example:

(*x*, 2)

 \implies a mixture of regular examples $\{(x, 1), (x, 2), (x, 2), (x, 3)\}$

or a weighted mixture $\{(x, 1, 1), (x, 2, 2), (x, 3, 1)\}$

why split?

H.-T. Lin (NTU CSIE)

Cost Transformation Methodology

Cost Equivalence by Splitting

• (x,2) \Rightarrow a weighted mixture {(x,1,1), (x,2,2), (x,3,1)}

• **cost equivalence**: for any classifier *g*,

$$\mathcal{C}(y,g(x)) = \sum_{\ell=1}^{K} Q(y,\ell) \mathcal{C}_{c}(\ell,g(x))$$

= min_g expected RHS (regular when $Q(y, \ell) \ge 0$)

Cost Transformation Methodology: Preliminary

Cost Transformation Methodology

- split each training example (x_n, y_n) to a weighted mixture $\{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$
- apply regular classification algorithm on the weighted mixtures $\bigcup_{n=1}^{N} \{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$
- by cost equivalence,

good g for new regular classification problem

- good g for original cost-sensitive classification problem
- regular classification: needs $Q(y_n, \ell) \ge 0$

but what if $Q(y_n, \ell)$ negative?

Cost Transformation Methodology

Similar Cost Vectors

$$\underbrace{\begin{pmatrix} 1 & 0 & 1 & 2 \\ 3 & 2 & 3 & 4 \end{pmatrix}}_{\text{costs}} = \underbrace{\begin{pmatrix} 1/3 & 4/3 & 1/3 & -2/3 \\ 1 & 2 & 1 & 0 \end{pmatrix}}_{\text{mixture weights } Q(y, \ell)} \cdot \underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{\text{classification costs}}$$

• negative $Q(y, \ell)$: cannot split

 but ĉ = (1,0,1,2) is similar to c = (3,2,3,4): for any classifier g,

 $\hat{\mathbf{c}}[g(x)] + \text{constant} = \mathbf{c}[g(x)]$

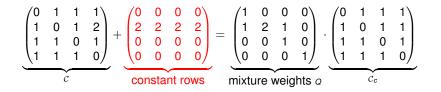
constant can be dropped during minimization

shifting cost matrix by constant rows does not affect minimization

H.-T. Lin (NTU CSIE)

Cost Transformation Methodology

Cost Transformation Methodology: Revised



- shift each row of original cost to a similar and "splittable" C(y, :), i.e., with $Q(y_n, \ell) \ge 0$
- Split (x_n, y_n) to weighted mixture $\{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$

Solution algorithm on the weighted mixtures $⋃_{n=1}^{N} \{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$

good *g* for new regular classification problem good *g* for cost-sensitive classification problem

Cost Transformation Methodology Uncertainty in Mixture

- a single example {(x, 2)}
 —certain that the desired label is 2
- a mixture {(x, 1, 1), (x, 2, 2), (x, 3, 1)} sharing the same x
 —uncertainty in the desired label (25%: 1,50%: 2,25%: 3)
- over-shifting adds unnecessary mixture uncertainty:

$$\underbrace{\begin{pmatrix} 3 & 2 & 3 & 4 \\ 33 & 32 & 33 & 34 \end{pmatrix}}_{\text{costs}} = \underbrace{\begin{pmatrix} 1 & 2 & 1 & 0 \\ 11 & 12 & 11 & 10 \end{pmatrix}}_{\text{mixture weights}} \cdot \underbrace{\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}}_{\mathcal{C}_{c}}$$

should choose a similar and splittable **c** with **minimum mixture uncertainty**

Cost Transformation Methodology: Final

- shift original cost to a similar and splittable C with minimum "mixture uncertainty"
- Solution split (x_n, y_n) to a weighted mixture $\{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$ with C

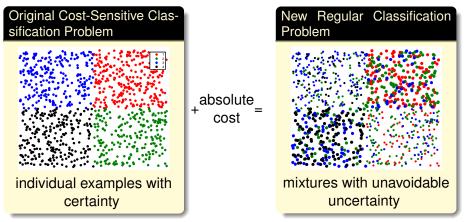
• apply regular classification algorithm on the weighted mixtures $\bigcup_{n=1}^{N} \{(x_n, \ell, Q(y_n, \ell))\}_{\ell=1}^{K}$

- mixture uncertainty: entropy of each normalized Q(y,:)
- a simple and unique optimal shifting exists for every C
 —Q(y, k) = max_ℓ C(y, ℓ) − C(y, k)

good g for new regular classification problem

= good g for cost-sensitive classification problem

Unavoidable (Minimum) Uncertainty



new problem usually harder than original one

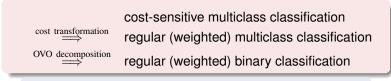
need robust regular classification algorithm to deal with uncertainty

H.-T. Lin (NTU CSIE)

From OVO to CSOVO

One-Versus-One: A Popular Classification Meta-Method

- for a pair (*i*, *j*), take all examples (*x_n*, *y_n*) that *y_n* = *i* or *j*
- 2 train a binary classifier $g^{(i,j)}$ using those examples
- **③** repeat the previous two steps for all different (i, j)
- predict using the votes from $g^{(i,j)}$



cost-sensitive one-versus-one: cost transformation + one-versus-one

H.-T. Lin (NTU CSIE)

Cost-sensitive One-versus-one

06/24/2012 22 / 25

Cost-Sensitive One-Versus-One (CSOVO)

• predict using the votes from $g^{(i,j)}$

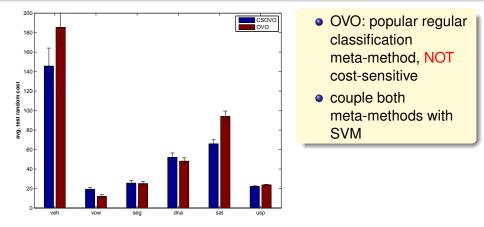
• comes with good theoretical guarantee:

test cost of final classifier \leq 2 $\sum_{i < j}$ test cost of $g^{(i,j)}$

simple, efficient, and takes original OVO as special case

Experimental Performance

CSOVO v.s. OVO



CSOVO often better suited for cost-sensitive classification

- **cost transformation** methodology: makes **any** (robust) regular classification algorithm cost-sensitive
- theoretical guarantee: cost equivalence
- algorithmic use: a novel and simple algorithm CSOVO
- experimental performance of CSOVO: superior

Thank you for your attention!

