Multi-label Classification Setup

Which tags are associated with this picture?

\[Y = \{ \text{building, taipei 101, day, night view, skyscraper, fireworks, sun, face, firework, sun face, taipei world financial center, unsatellite, etc.} \} \]

- Given: N examples \(\{ \mathbf{x}_i \in \mathbb{R}^D, y_i \subseteq \{1, 2, \ldots, K \}\}_{i=1}^N \)
- Goal: classifier \(g(y) \) that closely predicts the label-set \(Y \) associated with some unseen inputs \(x \), presumably by exploiting hidden relations between labels, e.g.
 - taipei 101 & taipei world financial center highly correlated
 - skyscraper subset of building
 - day view & night view disjoint

Label Space Dimension Reduction

\[Y \subseteq \{1, 2, \ldots, K\} \text{ equivalent to } y \in \{0, 1\}^K \]

- feature space dimension reduction: compress \(x \) to remove irrelevant, redundant (possibly related), or noisy information, and achieve better efficiency & performance
 - principal component analysis (PCA): linearly project \(x \) to \(W \mathbf{x} \) with minimum projection error
 - canonical correlation analysis (CCA): linearly project \(x \) to \(W \mathbf{x} \) in order to maximize correlation with \(Y \)
- label space dimension reduction: analogously, but compress \(y \) instead
 1. compress: transform \(\{(x_i, y_i)\} \rightarrow \{(x_i, t_i)\} \) with \(t_i = \text{compress}(y_i) \in \{0, 1\} \) and \(M < K \)
 2. learn: train some \(f(x) \) from \(\{(x_i, t_i)\} \)
 3. decompress: \(g(x) = \text{decompress}(f(x)) \)

Conditional Principal Label Space Transformation

- idea 1: exploit dual role of CCA to be feature-aware
 - project \(x \) to \(W \mathbf{x} \) in order to maximize correlation with some \(V \mathbf{y} \)
 - project \(y \) to \(V \mathbf{y} \) in order to minimize difference to some \(W \mathbf{x} \)
 - proposed OCCA: \(\min W, V \{ |XW^T − ZV^T|_2^2 \} \), s.t. \(V \mathbf{y} \) = I
 - project to easiest-by-linear-regression directions
 - idea 2: keep benefits of PLST for compression
 - existing PLST: \(\min |Y − VV^T\mathbf{y}|_2 \), s.t. \(V \mathbf{y} \) = I
 - project to most representative directions
 - proposed algorithm: conditional principal label space transformation (CPLST)
 \[\min W \{ |XW^T − YV^T|_2^2 + |Y − VV^T\mathbf{y}|_2^2 \} \text{ s.t. } V \mathbf{y} \equiv I \]
 - theoretical guarantee (Tai and Lin, NC 2012): when using linear regression as \(r \),
 - learning error \(\geq \) compression error
 - algorithmic simplicity: closed-form optimal \(V \) contains top eigenvectors of \(XX^T \)

- compressive sensing (Bin et al., NIPS 2009): linearly project \(y \) to \(t = \text{compress}(y) \) with random \(v \) (for coherence
- principal label space transformation (PLST): Tai and Lin, NC 2012): linearly project \(y \) to \(t = \text{compress}(y) \) with minimum projection error (sibling of PCA)

Feature-Aware Label Space Dimension Reduction

- feature space dimension reduction: \(\min |XW^T − ZV^T|_2 \) \text{ s.t. } \mathbf{y} = I
 - supervised (using \(y \))
 - PCA, locally linear embedding, etc.
 - CCA, sliced inverse regression, etc.
 - unsupervised (not using \(y \))
 - supervised generally better for learning from \(\text{compr}(x) \)

- label space dimension reduction
 - feature-aware (using \(x \))
 - CPLST, compressive sensing, etc.
 - feature-unaware (not using \(x \))
 - PLST, conditional principal label space transformation

- can we improve PLST by feature-aware label space dimension reduction?

Experimental Results

- OCCA: optimize learning error, but worst in compression error
- PLST: optimize compression error, but worst in learning error
- CPLST: optimize learning+compression error, and hence best hamming loss on benchmark data sets

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>CPLST vs. PLST</th>
<th>PLST vs. PLST</th>
<th>OCCA vs. PLST</th>
<th>CPLST vs. OCCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>M = 20/K</td>
<td>2 win, 5 similar</td>
<td>2 win, 6 similar</td>
<td>5 win, 1 lose, 2 similar</td>
<td>CPLST consistently better than or similar to PLST across data & algorithms</td>
</tr>
</tbody>
</table>

Summary

Conditional Principal Label Space Transformation, which
- projects to conditional principal directions by combining ideas behind CCA (feature-aware) and PLST (optimal compression).
- can be kernelized for exploiting feature power.
- achieves better/similar practical performance consistently when compared with the readily-strong PLST.

Feature-aware Label Space Dimension Reduction for Multi-label Classification

Yao-Nan Chen (r99922008@cseie.ntu.edu.tw) and Hsuan-Tien Lin (htlin@cseie.ntu.edu.tw)
Department of Computer Science and Information Engineering, National Taiwan University