FEATURE-AWARE LABEL SPACE DIMENSION REDUCTION FOR MULTI-LABEL CLASSIFICATION Yao-Nan Chen (r99922008@csie.ntu.edu.tw) and Hsuan-Tien Lin (htlin@csie.ntu.edu.tw) Department of Computer Science and Information Engineering, National Taiwan University

MULTI-LABEL CLASSIFICATION SETUP

Which tags \mathcal{Y} are associated with this picture \mathbf{x} ?

[building, taipei 101, day view, $\mathcal{Y} = \{$ night view, skyscraper, fireworks, new york, fireworks, car, face, taipei world financial center, university, etc.}

(CC BY-SA SElefant from Wikimedia Commons)

- Given: N examples $\left\{ \left(\mathbf{x}_n \in \mathbb{R}^d, \mathcal{Y}_n \subseteq \{1, 2, \cdots, K\} \right) \right\}_{n=1}^N$
- Goal: classifier $g(\mathbf{x})$ that closely predicts the label-set \mathcal{Y} associated with some unseen inputs x, presumably by exploiting hidden relations between labels, e.g.
 - taipei 101 & taipei world financial center highly correlated
 - skyscraper subset of building
 - day view & night view disjoint

LABEL SPACE DIMENSION REDUCTION

 $\mathcal{Y} \subseteq \{1, 2, \cdots, K\}$ equivalent to $\mathbf{y} \in \{0, 1\}^K$

- feature space dimension reduction: compress \mathbf{x} to remove irrelevant, redundant (possibly related), or noisy information, and achieve better efficiency & performance
 - principal component analysis (PCA): linearly project \mathbf{x} to $\mathbf{w}_m^T \mathbf{x}$ with minimum projection error
 - canonical correlation analysis (CCA): linearly project \mathbf{x} to $\mathbf{w}_m^T \mathbf{x}$ in order to maximize correlation with some $\mathbf{v}_m^T \mathbf{y}$
- label space dimension reduction: analogously, but compress y instead

1. compress: transform $\{(\mathbf{x}_n, \mathbf{y}_n)\}$ to $\{(\mathbf{x}_n, \mathbf{t}_n)\}$ with $\mathbf{t}_n = \operatorname{compress}(\mathbf{y}_n) \in \mathbb{R}^M \text{ and } M \ll K$

- 2. learn: train some $\mathbf{r}(\mathbf{x})$ from $\{(\mathbf{x}_n, \mathbf{t}_n)\}$
- 3. decompress: $g(\mathbf{x}) = \operatorname{decompress}(\mathbf{r}(\mathbf{x}))$
- compressive sensing (Hsu et al., NIPS 2009): linearly project y to $\mathbf{t}[m] = \mathbf{v}_m^T \mathbf{y}$ with random \mathbf{v}_m 's (for incoherence)
- principal label space transformation (PLST; Tai and Lin, NC 2012): linearly project y to $\mathbf{t}[m] = \mathbf{v}_m^T \mathbf{y}$ with minimum projection error (sibling of PCA)

FEATURE-AWARE LABEL SPACE DIMENSION REDUCTION

• feature space dimension reduction

unsupervised (not using \mathbf{y})

PCA, locally linear embedding, etc.

• label space dimension reduction

feature-unaware (not using \mathbf{x})

PLST, compressive sensing, etc.

—can we improve PLST by **feature-aware** label space dimension reduction?

CONDITIONAL PRINCIPAL LABEL SPACE TRANSFORMATION

• idea 1: exploit dual role of CCA to be feature-aware

proposed OCCA : $\min_{\mathbf{W},\mathbf{V}} \| \mathbf{X} \|$

- project to easiest-by-linear-regression directions

• idea 2: keep benefits of PLST for compression existing $PLST : \min || \mathbf{Y}$

- project to most representative directions

 $\min_{\mathbf{W},\mathbf{V}} \|\mathbf{X}\mathbf{W}^T - \mathbf{Y}\mathbf{V}^T\|_F^2 + \|$ learning error compression error

- theoretical guarantee (Tai and Lin, NC 2012): when using linear regression as \mathbf{r} ,

hamming loss \leq learning error + compression error

- algorithmic simplicity: closed-form optimal V contains top eigenvectors of

OCCA	PLST	CPLST
$\mathbf{Y}^T (\underbrace{\mathbf{X} \mathbf{X}^{\dagger}}_{\text{hot matrix}} - \mathbf{I}) \mathbf{Y}$	$\mathbf{Y}^T \mathbf{Y}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Hat HIATIX		hat matrix

(note: \mathbf{Z} , i.e. the mean-shifted \mathbf{Y} , is actually used for better projection)

supervised (using \mathbf{y})

CCA, sliced inverse regression, etc.

—supervised generally better for learning from compress(x) to y

feature-aware (using \mathbf{x})

???

project \mathbf{x} to $\mathbf{w}_m^T \mathbf{x}$ in order to maximize correlation with some $\mathbf{v}_m^T \mathbf{y}$ \equiv project y to $\mathbf{v}_m^T \mathbf{y}$ in order to maximize correlation with some $\mathbf{w}_m^T \mathbf{x}$ \approx project y to $\mathbf{v}_m^T \mathbf{y}$ in order to minimize difference to some $\mathbf{w}_m^T \mathbf{x}$

$$\mathbf{W}^T - \mathbf{W}^T ||_F^2$$
, s.t. $\mathbf{V}\mathbf{V}^T = \mathbf{I}$

$$\| \mathbf{Y} - \mathbf{Y}\mathbf{V}^T\mathbf{V} \|_F^2$$
, s.t. $\mathbf{V}\mathbf{V}^T = \mathbf{I}$

• proposed algorithm: conditional principal label space transformation (CPLST)

$$\|\mathbf{Y} - \mathbf{Y}\mathbf{V}^T\mathbf{V}\|_{F_{\star}}^2$$
, s.t. $\mathbf{V}\mathbf{V}^T = \mathbf{I}$

– physical meaning: exploit conditional (feature-aware) correlations - kernelization: replace linear regression with kernel ridge regression as r

EXPERIMENTAL RESULTS

on yeast data set:

• CPLST: optimize learning+compression error, and hence **best hamming loss** on 8 benchmark data sets:

algorithms	CPLST vs. PLST	CPLST vs. PLST	kernel-CPLST vs. PLST
	+ linear regression	+ decision tree	+ kernel ridge regression
M = 20% K	3 win , 5 similar	2 win , 6 similar	5 win , 1 lose, 2 similar

CPLST consistently better than or similar to PLST across data & algorithms

SUMMARY

Conditional Principal Label Space Transformation, which

- readily-strong PLST

• PBR: baseline, with standard basis as \mathbf{v}_m

• OCCA: optimize learning error, but worst in compression error

• PLST: optimize compression error, but worst in learning error

• projects to **conditional** principal directions by combining ideas behind **CCA** (featureaware) and PLST (optimal compression)

• can be **kernelized** for exploiting feature power

• achieves **better/similar** practical performance **consistently** when compared with the