Feature-aware Label Space Dimension Reduction for Multi-label Classification

Hsuan-Tien Lin

National Taiwan University

11/6/2012

first part: with Farbound Tai, in Neural Computation 2012 second part: with Yao-Nan Chen, to appear in NIPS 2012

A Short Introduction

Hsuan-Tien Lin

- Associate Professor (2012–present; Assistant Professor 2008-2012), Dept. of CSIE, National Taiwan University
- Leader of the Computational Learning Laboratory
- Co-author of the new introductory ML textbook "Learning from Data: A Short Course"

goal: make machine learning more realistic

- multi-class cost-sensitive classification: in ICML '10 (Haifa), BIBM '11, KDD '12, etc.
- online/active learning: in ACML '11, ICML '12, ACML '12
- video search: in CVPR '11
- multi-label classification: in ACML '11, NIPS '12, etc.
- large-scale data mining (w/ Profs. S.-D. Lin & C.-J. Lin & students): third place of KDDCup '09, champions of '10, '11 (x2), '12

Which Fruits?

?: {orange, strawberry, kiwi}

apple

orange

strawberry

kiwi

multi-label classification: classify input to multiple (or no) categories

Binary Relevance: Multi-label Classification via Yes/No

Binary Classification {yes, no}

Multi-label w/ L classes: L yes/no questions

apple (N), orange (Y), strawberry (Y), kiwi (Y)

- Binary Relevance approach: transformation to multiple isolated binary classification
- disadvantages:
 - isolation—hidden relations (if any) between labels not exploited
 - unbalanced—few yes, many no
 - scalability—training time O(L)

Binary Relevance: simple (& good) benchmark with known disadvantages

Multi-label Classification Setup

Input

N examples (input \mathbf{x}_n , label-set \mathcal{Y}_n) $\in \mathcal{X} \times 2^{\{1,2,\cdots L\}}$

• fruits: $\mathcal{X} = \text{encoding(pictures)}, \mathcal{Y}_n \subseteq \{1, 2, \dots, 4\}$

Output

a multi-label classifier $g(\mathbf{x})$ that **closely predicts** the label-set \mathcal{Y} associated with some **unseen** inputs \mathbf{x} (by exploiting hidden relations between labels)

• **Hamming loss**: normalized symmetric difference $\frac{1}{L}|g(\mathbf{x}) \triangle \mathcal{Y}|$

multi-label classification: hot and important

Geometric View of Multi-label Classification

label set
$$\mathcal{Y}_1 = \{0\}$$
 $\mathbf{y}_1 = [0, 1, 0]$ $\mathbf{y}_2 = \{a, o\}$ $\mathbf{y}_2 = [1, 1, 0]$ $\mathbf{y}_3 = \{a, s\}$ $\mathbf{y}_3 = [1, 0, 1]$

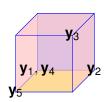
$$\mathcal{Y}_3 = \{a, s\}$$
 $\mathbf{y}_3 = [1, 0, 1]$ $\mathcal{Y}_4 = \{o\}$ $\mathbf{y}_4 = [0, 1, 0]$

binary code

$$\mathbf{y}_1 = [0, 1, 0]$$

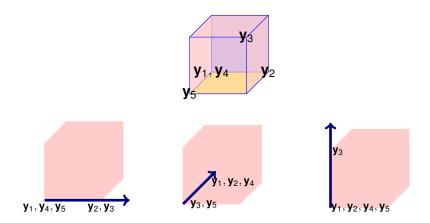
$$\mathbf{v}_4 = [0 \ 1 \ 0]$$

$$y_5 = \{\}$$
 $y_5 = [0, 0, 0]$



subset \mathcal{Y} of $2^{\{1,2,\cdots,L\}} \Leftrightarrow \text{vertex of hypercube } \{0,1\}^L$

Geometric Interpretation of Binary Relevance



Binary Relevance: project to L natural axes & classify —can we project to other $M(\ll L)$ directions & learn?

A Label Space Dimension Reduction Approach

General Compressive Sensing

sparse (few 1 many 0) binary vectors \mathbf{y} can be **robustly compressed** by projecting to $M \ll L$ random directions $\{\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_M\}$

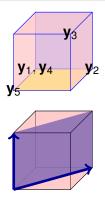
Compressive Sensing for Multi-label Classification (Hsu et al., 2009)

- **1 compress**: transform $\{(\mathbf{x}_n, \mathbf{y}_n)\}$ to $\{(\mathbf{x}_n, \mathbf{c}_n)\}$ by $\mathbf{c}_n = \mathbf{P}\mathbf{y}_n$ with some M by L random matrix $\mathbf{P} = [\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_M]^T$
- 2 learn: get regression function $\mathbf{r}(\mathbf{x})$ from \mathbf{x}_n to \mathbf{c}_n
- **3 decode**: $g(\mathbf{x})$ = sparse binary vector that **P**-projects closest to $\mathbf{r}(\mathbf{x})$

Compressive Sensing:

- efficient in training: random projection w/ M « L
- inefficient in testing: time-consuming decoding

Geometric Interpretation of Compressive Sensing



Compressive Sensing:

- project to random flat (linear subspace)
- learn "on" the flat; decode to closest sparse vertex

other (better) flat? other (faster) decoding?

Our Contributions

Two Novel Approaches for Label Space Dimension Reduction

- algorithmic: scheme for fast decoding
- theoretical: justification for best projection, one feature-unaware and the other feature-aware
- practical: significantly better performance than compressive sensing (& binary relevance)

will now introduce the key ideas behind the approaches

Faster Decoding: Round-based

Compressive Sensing Revisited

• **decode**: $g(\mathbf{x})$ = sparse binary vector that **P**-projects closest to $\mathbf{r}(\mathbf{x})$

For any given "prediction on subspace" $\mathbf{r}(\mathbf{x})$,

- find sparse binary vector that P-projects closest to r(x): slow
 —optimization of ℓ₁-regularized objective
- find any binary vector that P-projects closest to r(x): fast

$$g(\mathbf{x}) = \text{round}(\mathbf{P}^T \mathbf{r}(\mathbf{x}))$$
 for orthogonal \mathbf{P}

round-based decoding: simple & faster alternative

Better Projection: Principal Directions

Compressive Sensing Revisited

- **compress**: transform $\{(\mathbf{x}_n, \mathbf{y}_n)\}$ to $\{(\mathbf{x}_n, \mathbf{c}_n)\}$ by $\mathbf{c}_n = \mathbf{P}\mathbf{y}_n$ with some M by L random matrix \mathbf{P}
- random projection: arbitrary directions
- best projection: principal directions

principal directions: best approximation to desired output y_n during dimension reduction (why?)

Novel Theoretical Guarantee

Linear Transform + Learn + Round-based Decoding

Theorem (Tai and Lin, 2012)

If $g(\mathbf{x}) = round(\mathbf{P}^T \mathbf{r}(\mathbf{x}))$ (& \mathbf{p}_m orthogonal to each other),

$$\underbrace{\frac{1}{L}|g(\mathbf{x}) \triangle \mathcal{Y}|}_{Hamming \ loss} \leq const \cdot \underbrace{\left(\underbrace{\|\mathbf{r}(\mathbf{x}) - \mathbf{P}\mathbf{y}\|^2}_{learn} + \underbrace{\|\mathbf{y} - \mathbf{P}^T \mathbf{P}\mathbf{y}\|^2}_{compress} \right)}_{}$$

- $\|\mathbf{r}(\mathbf{x}) \mathbf{c}\|^2$: prediction error from input to codeword
- $\|\mathbf{y} \mathbf{P}^T \mathbf{c}\|^2$: encoding error from desired output to codeword

principal directions: best approximation to desired output **y**_n during dimension reduction (**indeed**)

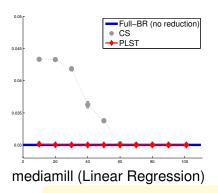
Proposed Approach: Principal Label Space Transform

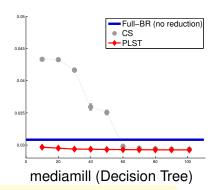
From Compressive Sensing to PLST

- **1 compress**: transform $\{(\mathbf{x}_n, \mathbf{y}_n)\}$ to $\{(\mathbf{x}_n, \mathbf{c}_n)\}$ by $\mathbf{c}_n = \mathbf{P}\mathbf{y}_n$ with the M by L principal matrix \mathbf{P}
- **2 learn**: get regression function $\mathbf{r}(\mathbf{x})$ from \mathbf{x}_n to \mathbf{c}_n
- **3** decode: $g(\mathbf{x}) = \text{round}(\mathbf{P}^T \mathbf{r}(\mathbf{x}))$
 - principal directions: via Principal Component Analysis on $\{y_n\}_{n=1}^N$ —BTW, improvements when shifting y_n by its estimated mean
 - physical meaning behind \mathbf{p}_m : key (linear) label correlations

PLST: improving CS by projecting to key correlations

Hamming Loss Comparison: Full-BR, PLST & CS





- PLST better than Full-BR: fewer dimensions, similar (or better) performance
- PLST better than CS: faster, better performance
- similar findings across data sets and regression algorithms (can we do even better?)

Theoretical Guarantee of PLST Revisited

Linear Transform + Learn + Round-based Decoding

Theorem (Tai and Lin, 2012)

If
$$g(\mathbf{x}) = round(\mathbf{P}^T\mathbf{r}(\mathbf{x}))$$
,

$$\underbrace{\frac{1}{L}|g(\mathbf{x}) \triangle \mathcal{Y}|}_{\text{Hamming loss}} \leq const \cdot \underbrace{\left(\underbrace{\|\mathbf{r}(\mathbf{x}) - \mathbf{\overrightarrow{Py}}\|^2}_{\text{learn}} + \underbrace{\|\mathbf{y} - \mathbf{P}^T \mathbf{\overrightarrow{Py}}\|^2}_{\text{compress}} \right)}_{\text{compress}}$$

- $\|\mathbf{y} \mathbf{P}^T \mathbf{c}\|^2$: encoding error, minimized during encoding
- $\|\mathbf{r}(\mathbf{x}) \mathbf{c}\|^2$: prediction error, minimized during learning
- but good encoding may not be easy to learn; vice versa

PLST: minimize two errors separately (**sub-optimal**) (can we do even better by minimizing **jointly**?)

The In-Sample Optimization Problem

$$\min_{\mathbf{r},\mathbf{P}} \left(\underbrace{\|\mathbf{r}(\mathbf{X}) - \mathbf{P}\mathbf{Y}\|^2}_{\text{learn}} + \underbrace{\|\mathbf{Y} - \mathbf{P}^T \mathbf{P}\mathbf{Y}\|^2}_{\text{compress}} \right)$$

start from a well-known tool, linear regression, as r

$$\mathbf{r}(\mathbf{X}) = \mathbf{X}\mathbf{W}$$

• for fixed **P**: a closed-form solution for learn is

$$\mathbf{W}^* = \mathbf{X}^\dagger \mathbf{P} \mathbf{Y}$$

substitute W* to objective function, then ...

optimal P :	
for learn	top eigenvectors of $\mathbf{Y}^T(\mathbf{I} - \mathbf{X}\mathbf{X}^\dagger)\mathbf{Y}$
for compress	
for both	top eigenvectors of Y ^T XX [†] Y

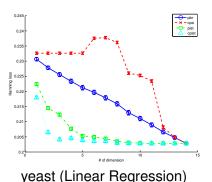
Proposed Approach: Conditional Principal Label Space Transform

From PLST to CPLST

- **ompress**: transform $\{(\mathbf{x}_n, \mathbf{y}_n)\}$ to $\{(\mathbf{x}_n, \mathbf{c}_n)\}$ by $\mathbf{c}_n = \mathbf{P}\mathbf{y}_n$ with the M by L conditional principal matrix \mathbf{P}
- **learn**: get regression function $\mathbf{r}(\mathbf{x})$ from \mathbf{x}_n to \mathbf{c}_n , ideally using linear regression
- **3 decode**: $g(\mathbf{x}) = \text{round}(\mathbf{P}^T \mathbf{r}(\mathbf{x}))$
 - conditional principal directions: top eigenvectors of Y^TXX[†]Y
 - physical meaning behind \mathbf{p}_m : key (linear) label correlations that are "easy to learn" subject to the features (feature-aware)

CPLST: **feature-aware** label space dimension reduction—can also pair with **kernel regression (non-linear)**

Hamming Loss Comparison: PLST & CPLST



- 001071 11 11 01071 11 11
- CPLST better than PLST: better performance across all dimensions
- similar findings across data sets and regression algorithms (even decision trees)

Conclusion

PLST

- transformation to multi-output regression
- project to principal directions and capture key correlations
- efficient learning (after label space dimension reduction)
- efficient decoding (round)
- sound theoretical guarantee
- good practical performance (better than CS & BR)

CPLST

- project to conditional (feature-aware) principal directions and capture key learnable correlations
- can be kernelized for exploiting feature power
- sound theoretical guarantee (via PLST)
- even better practical performance (than PLST)

Thank you! Questions?

20 / 20