Cost-Sensitive Classification: Algorithm and Application

Hsuan-Tien Lin htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University

Al in Data Science Forum December 20, 2017

About Me

- Chief Data Scientist, Appier
- Professor, Dept. of CSIE, NTU
- Co-author of textbook "Learning from Data: A Short Course"
- Instructor of two NTU-Coursera Mandarin-teaching ML Massive Open Online Courses

goal: make machine learning more realistic

- multi-class cost-sensitive classification : in ICML '10, BIBM '11, KDD '12, ACML '14, IJCAI '16, etc.
- multi-label classification: in ACML '11, NIPS '12, ICML '14, AAAI '18, etc.
- online/active learning: in ICML '12, ACML '12, ICML '14, AAAI '15, etc.
- large-scale data mining (w/ Profs. S.-D. Lin & C.-J. Lin & students): KDDCup world champions of '10, '11 (×2), '12, '13 (×2)

LEARNING FROM

DATA

Which Digit Did You Write?

a multiclass classification problem
 —grouping "pictures" into different "categories"

C'mon, we know about multiclass classification all too well! :-)

Performance Evaluation $(g(\mathbf{x}) \approx f(\mathbf{x})?)$

2 ?

- ZIP code recognition:
 - 1: wrong; 2: right; 3: wrong; 4: wrong
- check value recognition:
 - 1: one-dollar mistake; 2: no mistake;
 - 3: one-dollar mistake; 4: two-dollar mistake

different applications: evaluate mis-predictions differently

- regular multiclass classification: only right or wrong
- wrong cost: 1; right cost: 0
- prediction error of *h* on some (**x**, *y*):

classification cost = $[y \neq h(\mathbf{x})]$

regular multiclass classification: well-studied, many good algorithms

- cost-sensitive multiclass classification: different costs for different mis-predictions
- e.g. prediction error of *h* on some (**x**, *y*):

absolute cost = $|y - h(\mathbf{x})|$

cost-sensitive multiclass classification: relatively newer, need more research

Hsuan-Tien Lin (NTU CSIE)

What is the Status of the Patient?

H7N9-infected

cold-infected

healthy

 another classification problem —grouping "patients" into different "status"

are all mis-prediction costs equal?

Hsuan-Tien Lin (NTU CSIE)

Patient Status Prediction

- H7N9 mis-predicted as healthy: very high cost
- cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; can computer-aided diagnosis do the same?

What is the Type of the Movie?

romance

fiction

customer 1 who hates romance but likes terror

error measure = non-satisfaction

actual	romance	fiction	terror
romance	0	5	100

customer 2 who likes terror and romance

predicted actual	romance	fiction	terror
romance	0	5	3

different customers: evaluate mis-predictions differently

Hsuan-Tien Lin (NTU CSIE)

Cost-Sensitive Multiclass Classification Tasks

movie classification with non-satisfaction

predicted	romance	fiction	terror
customer 1, romance	0	5	100
customer 2, romance	0	5	3

patient diagnosis with society cost

predicted actual	H7N9	cold	healthy	
H7N9	0	1000	100000	
cold	100	0	3000	
healthy	100	30	0	

check digit recognition with absolute cost

$$\mathcal{C}(\boldsymbol{y},\boldsymbol{h}(\mathbf{x})) = |\boldsymbol{y} - \boldsymbol{h}(\mathbf{x})|$$

Cost Vector

cost vector c: a row of cost components

- customer 1 on a romance movie: $\mathbf{c} = (0, 5, 100)$
- an H7N9 patient: $\mathbf{c} = (0, 1000, 100000)$
- absolute cost for digit 2: $\mathbf{c} = (1, 0, 1, 2)$
- "regular" classification cost for label 2: $\mathbf{c}_c^{(2)} = (1, 0, 1, 1)$

regular classification: special case of cost-sensitive classification

Setup: Vector-Based Cost-Sensitive Binary Classification

Given

N examples, each (input \mathbf{x}_n , label y_n) $\in \mathcal{X} \times \{1, 2, \dots, K\}$

and cost vectors \mathbf{c}_n , each $\in \mathbb{R}^K$

—will assume
$$\mathbf{c}_n[y_n] = 0 = \min_{1 \le k \le K} \mathbf{c}_n[k]$$

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $\mathbf{c}[g(\mathbf{x})]$ on future **unseen** example $(\mathbf{x}, y, \mathbf{c})$

- will assume $\mathbf{c}[y] = 0 = c_{\min} = \min_{1 \le k \le K} \mathbf{c}[k]$
- note: y not really needed in evaluation

cost-sensitive classification:

can express any finite-loss supervised learning tasks

Our Contribution (Tu and Lin, ICML 2010)

	binary	multiclass
regular	well-studied	well-studied
cost-sensitive	known (Zadrozny et al., 2003)	ongoing (our works, among others)

a theoretic and algorithmic study of cost-sensitive classification, which ...

- introduces a methodology to reduce cost-sensitive classification to **regression**
- provides strong theoretical support for the methodology
- leads to a promising algorithm with superior experimental results

will describe the methodology and an algorithm

Hsuan-Tien Lin (NTU CSIE)

Key Idea: Cost Estimator

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $\mathbf{c}[g(\mathbf{x})]$ on future **unseen** example $(\mathbf{x}, y, \mathbf{c})$

if every c [<i>k</i>] known	if $r_k(\mathbf{x}) \approx \mathbf{c}[k]$ well
optimal	approximately good
$g^{*}(\mathbf{x}) = \operatorname{argmin}_{1 \leq k \leq K} \mathbf{C}[\kappa]$	$g_r(\mathbf{x}) = \arg \min_{1 \le k \le K} r_k(\mathbf{x})$

how to get cost estimator r_k ? regression

Cost Estimator by Per-class Regression

Given

N examples, each (input
$$\mathbf{x}_n$$
, label y_n , cost \mathbf{c}_n) $\in \mathcal{X} \times \{1, 2, \dots, K\} \times R^K$

want: $r_k(\mathbf{x}) \approx \mathbf{c}[k]$ for all future $(\mathbf{x}, y, \mathbf{c})$ and k

Hsuan-Tien Lin (NTU CSIE)

- 1 transform cost-sensitive examples $(\mathbf{x}_n, y_n, \mathbf{c}_n)$ to regression examples $(\mathbf{x}_{n,k}, Y_{n,k}) = (\mathbf{x}_n, \mathbf{c}_n[k])$
- estimators r_k(x)

(3) for each new input \mathbf{x} , predict its class using $g_r(\mathbf{x}) = \operatorname{argmin}_{1 \le k \le K} r_k(\mathbf{x})$

the reduction-to-regression framework: systematic & easy to implement

Theoretical Guarantees (1/2)

$$g_r(\mathbf{x}) = \operatorname*{argmin}_{1 \leq k \leq K} r_k(\mathbf{x})$$

Theorem (Absolute Loss Bound)

For any set of estimators (cost estimators) $\{r_k\}_{k=1}^{K}$ and for any example $(\mathbf{x}, y, \mathbf{c})$ with $\mathbf{c}[y] = 0$,

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sum_{k=1}^{K} |r_k(\mathbf{x}) - \mathbf{c}[k]|.$$

low-cost classifier ← accurate estimator

Hsuan-Tien Lin (NTU CSIE)

Theoretical Guarantees (2/2)

$$g_r(\mathbf{x}) = \operatorname*{argmin}_{1 \leq k \leq K} r_k(\mathbf{x})$$

Theorem (Squared Loss Bound)

For any set of estimators (cost estimators) $\{r_k\}_{k=1}^{K}$ and for any example $(\mathbf{x}, y, \mathbf{c})$ with $\mathbf{c}[y] = 0$,

$$\mathbf{c}[g_r(\mathbf{x})] \leq \sqrt{2\sum_{k=1}^{K} (r_k(\mathbf{x}) - \mathbf{c}[k])^2}.$$

applies to common least-square regression

Hsuan-Tien Lin (NTU CSIE)

A Pictorial Proof

$$extbf{c}[g_r(extbf{x})] \leq \sum_{k=1}^{K} \Bigl| r_k(extbf{x}) - extbf{c}[k] \Bigr|$$

assume c ordered and not degenerate:

$$y = 1; 0 = \mathbf{c}[1] < \mathbf{c}[2] \leq \cdots \leq \mathbf{c}[\mathcal{K}]$$

• assume mis-prediction $g_r(\mathbf{x}) = 2$: $r_2(\mathbf{x}) = \min_{1 \le k \le K} r_k(\mathbf{x}) \le r_1(\mathbf{x})$

$$\mathbf{c}[\mathbf{2}] - \underbrace{\mathbf{c}[\mathbf{1}]}_{0} \leq |\Delta_{1}| + |\Delta_{\mathbf{2}}| \leq \sum_{k=1}^{K} |r_{k}(\mathbf{x}) - \mathbf{c}[k]|$$

Hsuan-Tien Lin (NTU CSIE)

An Even Closer Look

let $\Delta_1 \equiv r_1(\mathbf{x}) - \mathbf{c}[1]$ and $\Delta_2 \equiv \mathbf{c}[2] - r_2(\mathbf{x})$

$$\begin{array}{l} \bullet \Delta_1 \geq 0 \text{ and } \Delta_2 \geq 0 \text{: } \mathbf{c}[2] \leq \Delta_1 + \Delta_2 \\ \bullet \Delta_1 \leq 0 \text{ and } \Delta_2 \geq 0 \text{: } \mathbf{c}[2] \leq \Delta_2 \\ \bullet \Delta_1 \geq 0 \text{ and } \Delta_2 \leq 0 \text{: } \mathbf{c}[2] \leq \Delta_1 \end{array}$$

 $\mathbf{c}[2] \leq \max(\Delta_1, 0) + \max(\Delta_2, 0) \leq |\Delta_1| + |\Delta_2|$

Tighter Bound with One-sided Loss

Define **one-sided loss** $\xi_k \equiv \max(\Delta_k, 0)$

with
$$\Delta_k \equiv (r_k(\mathbf{x}) - \mathbf{c}[k])$$
 if $\mathbf{c}[k] = c_{\min}$
 $\Delta_k \equiv (\mathbf{c}[k] - r_k(\mathbf{x}))$ if $\mathbf{c}[k] \neq c_{\min}$

Intuition

- c[k] = c_{min}: wish to have r_k(x) ≤ c[k]
- $\mathbf{c}[k] \neq c_{\min}$: wish to have $r_k(\mathbf{x}) \geq \mathbf{c}[k]$

–both wishes same as $\Delta_k \leq 0$ and hence $\xi_k = 0$

One-sided Loss Bound:
$$oldsymbol{c}[g_r(oldsymbol{x})] \leq \sum_{k=1}^K \xi_k \leq \sum_{k=1}^K \Bigl| \Delta_k$$

- transform cost-sensitive examples (x_n, y_n, c_n) to regression examples
- 2 use a one-sided regression algorithm to get estimators $r_k(\mathbf{x})$
- Output Section 3: Section 3:

the reduction-to-OSR framework: need a good OSR algorithm

Regularized One-sided Hyper-linear Regression

Given

$$\left(\mathbf{x}_{n,k}, Y_{n,k}, Z_{n,k}\right) = \left(\mathbf{x}_n, \mathbf{c}_n[k], 2\left[\left[\mathbf{c}_n[k] = \mathbf{c}_n[y_n]\right]\right] - 1\right)$$

Training Goal

all training
$$\xi_{n,k} = \max\left(\underbrace{Z_{n,k}\left(r_k(\mathbf{x}_{n,k}) - Y_{n,k}\right)}_{\Delta_{n,k}}, 0\right)$$
 small
--will drop k

$$egin{array}{lll} \min_{\mathbf{w},b} & rac{\lambda}{2} \langle \mathbf{w}, \mathbf{w}
angle + \sum_{n=1}^{N} \xi_n \ \mathrm{to \ get} & r_k(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x})
angle + b \end{array}$$

Hsuan-Tien Lin (NTU CSIE)

One-sided Support Vector Regression

Regularized One-sided Hyper-linear Regression

$$\min_{\mathbf{w},b} \quad \frac{\lambda}{2} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} \xi_n \\ \xi_n = \max \left(Z_n \cdot \left(r_k(\mathbf{x}_n) - Y_n \right), 0 \right)$$

Standard Support Vector Regression

$$\min_{\mathbf{w},b} \quad \frac{1}{2C} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} (\xi_n + \xi_n^*)$$
$$\xi_n = \max \left(+1 \cdot (r_k(\mathbf{x}_n) - Y_n - \epsilon), 0 \right)$$
$$\xi_n^* = \max \left(-1 \cdot (r_k(\mathbf{x}_n) - Y_n + \epsilon), 0 \right)$$

OSR-SVM = SVR + $(0 \rightarrow \epsilon)$ + (keep ξ_n or ξ_n^* by Z_n)

OSR versus Other Reductions

OSR: K regressors

How unlikely (costly) does the example belong to class k?

Filter Tree (FT): K - 1 binary classifiers

Is the lowest cost within labels {1,4} or {2,3}? Is the lowest cost within label {1} or {4}? Is the lowest cost within label {2} or {3}?

Weighted All Pairs (WAP): $\frac{K(K-1)}{2}$ binary classifiers

is c[1] or c[4] lower?

OSR-SVM on Semi-Real Data

OSR often significantly better than OVA

Hsuan-Tien Lin (NTU CSIE)

OSR versus FT on Semi-Real Data

FT faster, but OSR better performing

OSR versus WAP on Semi-Real Data

OSR faster and comparable performance

Six Years after OSR-SVM (Chung, Lin and Yang, IJCAI 2016)

OSR-SVM
$$\min_{\mathbf{w},b} \quad \frac{\lambda}{2} \langle \mathbf{w}, \mathbf{w} \rangle + \sum_{n=1}^{N} \xi_n$$
with $r_k(\mathbf{x}) = \langle \mathbf{w}, \phi(\mathbf{x}) \rangle + b$
 $\xi_n = \max \left(Z_n \cdot \left(r_k(\mathbf{x}_n) - Y_n \right), 0 \right)$

CS Deep NNet (CSDNN) min NNet with $r_k(\mathbf{x}) = \text{NNet}(\mathbf{x})$ $\delta_n = \ln(1 + \exp(Z_n \cdot (r_k(\mathbf{x}_n) - Y_n)))$

- CSDNN: world's first cost-sensitive deep model via a smoother upper bound—δ_n ≥ ξ_n because ln(1 + exp(•)) ≥ max(•, 0)
- δ_n used in both pretraining & training for better NNet feature extraction

concept of reduction-to-OSR still useful after 6 years

Hsuan-Tien Lin (NTU CSIE)

A Real Medical Application: Classifying Bacteria

The Problem

- by human doctors: different treatments \iff serious costs
- cost matrix averaged from two doctors:

	Ab	Ecoli	HI	KP	LM	Nm	Psa	Spn	Sa	GBS
Ab	0	1	10	7	9	9	5	8	9	1
Ecoli	3	0	10	8	10	10	5	10	10	2
HI	10	10	0	3	2	2	10	1	2	10
KP	7	7	3	0	4	4	6	3	3	8
LM	8	8	2	4	0	5	8	2	1	8
Nm	3	10	9	8	6	0	8	3	6	7
Psa	7	8	10	9	9	7	0	8	9	5
Spn	6	10	7	7	4	4	9	0	4	7
Sa	7	10	6	5	1	3	9	2	0	7
GBS	2	5	10	9	8	6	5	6	8	0

is cost-sensitive classification realistic?

OSR versus OVO/CSOVO(WAP)/FT on Bacteria Data

(Jan et al., BIBM 2011)

OSR best: cost-sensitive classification is helpful

Hsuan-Tien Lin (NTU CSIE)

Cost-and-Error-Sensitive Classification with Bioinformatics Application

Soft Cost-sensitive Classification

The Problem

- cost-sensitive classifier: low cost but high error
- traditional classifier: low error but high cost
- how can we get the blue classifiers?: low error and low cost

cost-and-error-sensitive: more suitable for medical needs

Cost-and-Error-Sensitive Classification with Bioinformatics Application

Improved OSR for Cost and Error on Semi-Real Data

key idea (Jan et al., KDD 2012): consider a 'modified' cost that mixes original cost and 'regular cost'

Cost		Error	
iris	≈	iris	0
wine	~	wine	0
glass	~	glass	Ŏ I
vehicle	~	vehicle	Ŏ I
vowel	0	vowel	Ŏ
segment	ŏ	segment	Ŏ
dna	ŏ	dna	Ŏ
satimage	* *	satimage	Ŏ I
usps	0	usps	Ŏ I
zoo	Õ	Z00	Ŏ I
splice	æ	splice	Ó
ecoli	*	ecoli	Ó
soybean	~	soybean	Ŏ

improves other cost-sensitive classification algorithms, too

Conclusion

- reduction from cost-sensitive classification to regression: via cost estimation
- one-sided regression with solid theoretical guarantee
- superior experimental results with OSR-SVM
- OSR for deep learning: OSR-SVM \rightarrow CSDNN
- OSR for medical application: towards cost-and-error-sensitive

Thank you. Questions?