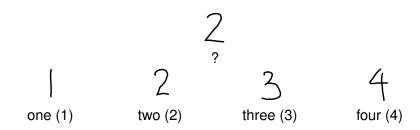
Cost-sensitive Classification: Status and Beyond


Hsuan-Tien Lin

Department of Computer Science and Information Engineering National Taiwan University

Talk in MLRT@TAAI, 11/18/2010

Which Digit Did You Write?

• classification: a classic problem in machine learning

how to evaluate classification performance?

Mis-prediction Costs $(g(\mathbf{x}) \approx f(\mathbf{x})?)$

2

• ZIP code recognition:

1: wrong; 2: right; 3: wrong; 4: wrong

check value recognition:

1: one-dollar mistake; 2: no mistake;

3: one-dollar mistake; 4: two-dollar mistake

different applications:

evaluate mis-predictions differently

Check Value Recognition

2

1: one-dollar mistake; 2: no mistake; 3: one-dollar mistake; 4: **two**-dollar mistake

- cost-sensitive classification problem: different costs for different mis-predictions
- e.g. prediction error of g on some (\mathbf{x}, y) :

absolute cost =
$$|y - g(\mathbf{x})|$$

cost-sensitive (as opposed to cost-less) classification: relatively **new**, need more research

What is the Status of the Patient?

cold-infected

healthy

- another classification problem
 grouping "patients" into different "status"
 - are all mis-prediction costs equal?

Patient Status Prediction

error measure = society cost

one measure ecolory coor			
predicted actual	H1N1	cold	healthy
H1N1	0	1000	100000
cold	100	0	3000
healthy	100	30	0

- H1N1 mis-predicted as healthy: very high cost
- o cold mis-predicted as healthy: high cost
- cold correctly predicted as cold: no cost

human doctors consider costs of decision; can computer-aided diagnosis do the same?

Cost-sensitive Classification Setup

Given

N examples, each (input \mathbf{x}_n , label y_n) $\in \mathcal{X} \times \{1, 2, ..., K\}$ and a K by K **cost matrix** C

• K = 2: binary; K > 2: multiclass

Goal

a classifier $g(\mathbf{x})$ that pays a small cost $\mathcal{C}(y, g(\mathbf{x}))$ on future **unseen** example (\mathbf{x}, y)

cost-sensitive classification:

a powerful and general setup

A Quick Overview of Selected Algorithms

cost-sensitive classification via

- relabeling
- reweighting
- relabeling + reweighting (our work, among others)
- reducing to binary classification (our work, among others)
- reducing to regression (our work)

Cost-sensitive Classification via Relabeling

(Domingos, KDD, 1999)

key idea

cost-sensitive classification

- = cost-less classification + relabeling some examples based on cost
 - general and makes any cost-less approach cost-sensitive
 - but heuristic: relabel using posterior probability estimate

theoretically sound approach?

Cost-sensitive Classification via Reweighting

(Elkan, IJCAI, 2001)

key idea

cost-sensitive classification

- = cost-less classification + emphasizing some costly examples
 - simple and theoretically sound
 - but applies to only binary cost-sensitive classification
 multiclass case more complicated

theoretically sound approach for multiclass cost-sensitive classification?

Cost-sensitive Classification via Relabeling + Reweighting (Abe et al., KDD, 2004; Lin, Caltech, 2008)

key idea

cost-sensitive classification

- = cost-less classification + emphasizing and relabeling some examples
 - theoretically sound for multiclass: good cost-less classification ⇒ good cost-sensitive classification
 - but introduces relabeling noise to the learning process
 —bad practical performance

theoretically sound approach for multiclass cost-sensitive classification with promising practical performance?

Cost-sensitive Classification via Pairwise Binary Classification (Beygelzimer et al, ICDM, 2003; Lin, NTU, 2010)

key idea

cost-sensitive classification

- = binary classification + "Which of the two classes is of smaller cost?"
 - theoretically sound: good binary classification ⇒ good cost-sensitive classification
 - promising practical performance (with a good binary classifier)
 - does not scale well with K, the number of classes

theoretically sound approach for large-K multiclass cost-sensitive classification with promising practical performance?

Cost-sensitive Classification via Regression (Tu and Lin, ICML, 2010)

key idea

cost-sensitive classification

- = regression + "What is the estimated cost of each class?"
 - theoretically sound: good regression ⇒ good cost-sensitive classification
 - promising practical performance (with a good regressor)
 - scales better with K

what next?

Key Remaining Question: Application

theory: well-understood algorithm: sufficiently many application: where? more?

• Where does cost come from?

- user-provided: but may not be feasible
 —consider cost intervals instead? (Liu and Zhou, KDD, 2010)
- parameter-to-be-tuned: but currently lacks guidelines to users
 —link cost-sensitive to the true application needs?
- What are important public benchmarks?
 - semi-artificial (traditional): assigning arbitrary costs to existing sets
 - vision data with a class hierarchy?—ongoing but highly depends on feature extraction rather than costs
 - NELL data?—cost as soft-constraints
 - special types of learning problems (e.g. ranking)? others?

Assisting the users on **true application needs** will drive future cost-sensitive classification research.

Thank you. Questions?

