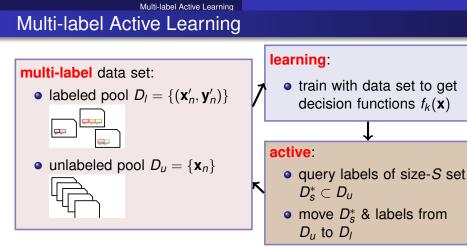
Multi-label Active Learning with Auxiliary Learner

Chen-Wei Hung and Hsuan-Tien Lin

National Taiwan University

November 15, 2011

C.-W. Hung & H.-T. Lin (NTU)



- expensiveness of labeling, especially for multi-label
- active learning: allow "asking questions" (query labels)

hope: reduce labeling cost while maintaining good performance by **asking key questions**

C.-W. Hung & H.-T. Lin (NTU)

Problem Setup

Given

 K-class problem with labeled pool D_l that contains (input x'_n, label-set y'_n); y'_n expressed by {-1, +1}^K

• an unlabeled pool $D_u = \{\mathbf{x}_n\}$

Goal

a multi-label active learning algorithm that iteratively

- learn a decent classifier $f_k(\mathbf{x}) \in \mathbb{R}^K$ from D_l , with sign $(f_k(\mathbf{x}))$ used to predict *k*-th label
- choose a key subset D_s^* from D_u to be queried

and improve performance of f_k efficiently w.r.t. # queries

multi-label active learning:

newer and less-studied (than binary active learning)

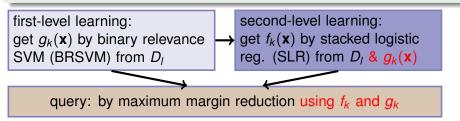
Multi-label Active Learning

Max. Loss Reduction with Max. Confidence (MMC)

State-of-the-art in Multi-label Active Learning

MMC: proposed by Yang et al.,

Effective Multi-label Active Learning for Text Classification, KDD, 2009



- binary relevance SVM (BRSVM): one binary SVM per label
- promising practical performance with some theoretical rationale

Motivation: How to improve MMC?

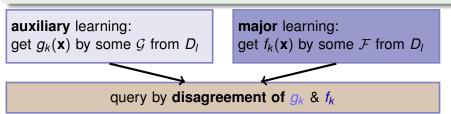
C.-W. Hung & H.-T. Lin (NTU)

Multi-label Active Learning

Multi-label Active Learning with Auxiliary Learner

ldea

digest the essence of MMC, and then extend for improvement



- proposed framework: query with two learners-major & auxiliary
- major (original f_k): for accurate predictions of multi-label learning
- auxiliary:
 - a different one to help query decisions
 - MMC
 - = (major: SLR) + (auxiliary: BRSVM) + (criterion: MMR)

Maximum Margin Reduction (MMR), Used by MMC

Intuition: Query by Version Space Reduction

 $\text{query set } D_s^* = \operatorname*{argmax}_{|D_s| = S, D_s \subset D_u} \left\{ \textit{V}(\mathcal{G}, \textit{D}_l) - \textit{V}(\mathcal{G}, \textit{D}_l \cup \text{labeled } \textit{D}_s) \right\}$

- V: size of version space (set of classifiers consistent to data)
- rationale: smaller $V \rightarrow$ less ambiguity in learning \rightarrow better
- MMR: with some other assumptions[‡]

 $D_s^* \approx \text{top } S \text{ instances} \in D_u, \text{ ordered by } \sum_{k=1}^{K} \frac{1 - \text{sign}(f_k(\mathbf{x})) \cdot g_k(\mathbf{x})}{2}$

equivalent MMR criterion: $-\sum_{k=1}^{K} \operatorname{sign}(f_k(\mathbf{x})) \cdot g_k(\mathbf{x})$

[‡]Yang et al.,Effective Multi-label Active Learning for Text Classification, KDD09

Maximum Hamming Loss Reduction (HLR)

Intuition: Query by Hamming Loss Reduction

 $\text{query set } D_s^* = \underset{|D_s| = S, D_s \subset D_u}{\text{argmax}} \left\{ \text{HL}(\mathcal{G}, D_l) - \text{HL}(\mathcal{G}, D_l \cup \text{labeled } D_s) \right\}$

- HL: Hamming loss made by learner G
- HLR (our proposed criterion): with some assumptions

$$D_s^* \approx \text{top } S \text{ instances} \in D_u,$$

ordered by $\sum_{k=1}^{K} \left[\text{sign}(f_k(\mathbf{x})) \neq \text{sign}(g_k(\mathbf{x})) \right]$

equivalent HLR criterion: $-\sum_{k=1}^{K} \operatorname{sign}(f_k(\mathbf{x})) \cdot \operatorname{sign}(g_k(\mathbf{x}))$

C.-W. Hung & H.-T. Lin (NTU)

Γ

Query Criteria

Quick Comparison between MMR and HLR

$-\sum_{k=1}^{K} \operatorname{sign}(f_k(\mathbf{x})) \cdot g_k(\mathbf{x})$

- rationale: reduce V rapidly
- magnitude-sensitive \mathfrak{S} : few large g_k that disagree with $f_k \Longrightarrow$ must query (not robust to outliers)

HLR

- $-\sum_{k=1}^{\kappa} \operatorname{sign}(f_k(\mathbf{x})) \cdot \operatorname{sign}(g_k(\mathbf{x}))$
- rationale: reduce HL rapidly
- magnitude-insensitive : useful ambiguity information in g_k lost (not aware of details)

better criterion by combining the two? Yes!

Soft Hamming Loss Reduction

- rationale:
 - $g_k(\mathbf{x})$ large—HLR to be robust to magnitude $g_k(\mathbf{x})$ small—MMR to keep ambiguity information
- Soft HLR:

$$\begin{array}{lll} D_{\mathcal{S}}^{*} & = & \operatorname{top} \, \mathcal{S} \, \operatorname{instances} \in D_{u}, \\ & & \operatorname{ordered} \, \operatorname{by} \, \sum_{k=1}^{\mathcal{K}} \operatorname{clip} \Bigl(-\operatorname{sign}(f_{k}(\mathbf{x})) \cdot g_{k}(\mathbf{x}), -1, \cdot \cdot \cdot \Bigr) \Bigr) \\ \end{array}$$

which is better? SHLR, HLR or MMR?

C.-W. Hung & H.-T. Lin (NTU)

Experiment

Query Criteria

- Random: use neither auxiliary nor major
- BinMin: use only auxiliary but not major
- SHLR, HLR, MMR: use both auxiliary & major

Setting (same as used by Yang et al. to evaluate MMC)

• D_l size: initial 500 to final 1500, step by S = 20

Major/Auxiliary Combination

- major = SLR[BRSVM]; auxiliary = BR(SVM): used by MMC
- major = CC(SVM); auxiliary = BR(SVM)

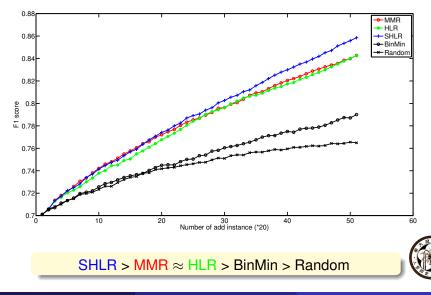
major = SLR[BRSVM]; auxiliary = CC(SVM)

improve MMC by SHLR or HLR? best criterion across major/auxiliary combinations?

C.-W. Hung & H.-T. Lin (NTU)

Experiment Experiment on SLR as major BR as auxiliary

SLR+BR, rcv1, Evaluated with F1-score



C.-W. Hung & H.-T. Lin (NTU)

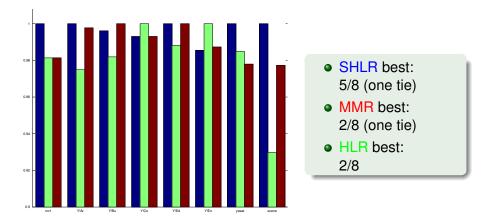
Multi-label AL w/ Auxiliary Learner

11/15/2011 (ACML) 11 / 14

Experiment

Experiment on SLR as major BR as auxiliary

SLR+BR across Data Sets, Evaluated with F1-score

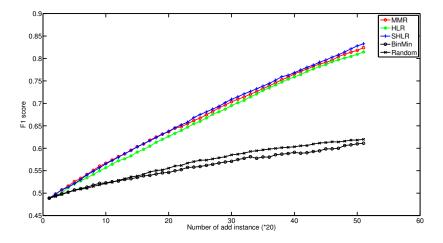


relative performance to the best across data sets: $\label{eq:shlr} SHLR > MMR \approx HLR \\ \mbox{better than MMC? YES!}$

C.-W. Hung & H.-T. Lin (NTU)

Experiment Experiment on SLR as major BR as auxiliary

CC+BR, rcv1, Evaluated with F1-score



SHLR similarly best when changing major to CC —or changing auxiliary to CC —or changing performance measure to Hamming loss

C.-W. Hung & H.-T. Lin (NTU)

Multi-label AL w/ Auxiliary Learner

13/14

Conclusion

- general framework for multi-label active learning: with auxiliary learner
- simple query criterion:
 via Hamming loss reduction, sometimes better
- even better query criterion:
 via soft Hamming loss reduction, usually best
- future work:

major/auxiliary combination, especially choice of auxiliary

Thank you. Questions?

