Attempts Towards Robust and Controllable Generation

Hsuan-Tien Lin 林軒田

Professor, National Taiwan University

August 27, 2024, Cloud Computing and IoT Association in Taiwan

About Me

Professor National Taiwan University

Chief Data Science Consultant (former Chief Data Scientist)

Appier Inc.

Appier

Co-author Learning from Data

Instructor NTU-Coursera MOOCs ML Foundations/Techniques

research goal: making machine more realistic

From Intelligence to Artificial Intelligence

intelligence: thinking and acting smartly

- humanly
- rationally

artificial intelligence: computers thinking and acting smartly

- humanly
- rationally

humanly \approx smartly \approx rationally —are humans rational? \odot

Humanly versus Rationally

What if your self-driving car decides one death is better than two—and that one is you? (The Washington Post http://wpo.st/ZK-51)

You're humming along in your self-driving car, chatting on your iPhone 37 while the machine navigates on its own. Then a swarm of people appears in the street, right in the path of the oncoming vehicle.

Car Acting Humanly

to save my (and passengers') life, stay on track

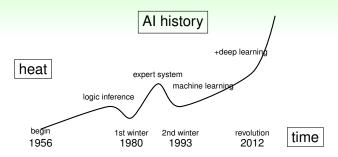
Car Acting Rationally

avoid the crowd and crash the owner for minimum total loss

which is smarter?
—depending on where I am, maybe? ⊙

Traditional vs. Modern [My] Definition of Al

Traditional Definition


humanly \approx intelligently \approx rationally

My Definition

intelligently \approx easily is your smart phone 'smart'? \odot

modern artificial intelligence = application intelligence

Al Milestones

- first AI winter: AI cannot solve 'combinatorial explosion' problems
- second AI winter: expert system failed to scale

reason of winters: expectation mismatch

What's Different Now?

More Data

- cheaper storage
- Internet companies

Faster Computation

- cloud computing
- GPU computing

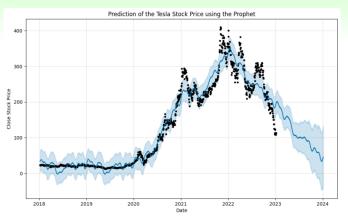
Better Algorithms

- decades of research
- e.g. deep learning

Healthier Mindset

- reasonable wishes
- key breakthroughs

data-enabled AI (with Machine Learning): mainstream nowadays


From AI to GAI: Is This GAI? (1/4)

Photos Licensed under CC BY-SA 3.0 from Diacritica on Wikimedia Commons

generative, but arguably no intelligence

From AI to GAI: Is This GAI? (2/4)

Photos Licensed under CC BY-SA 4.0 from Lovepeacejoy404 on Wikimedia Commons

predictive intelligence, but arguably not generative

From AI to GAI: Is This GAI? (3/4)

Leonardo da Vinci, in Public Domain

Van Gogh, in Public Domain all images are downloaded from Wikipedia

Pjfinlay, with CC0

generative intelligence, or just (predictive) image processing?

Properties of Generative Al

Recognitive Al

Listen/Read/Watch

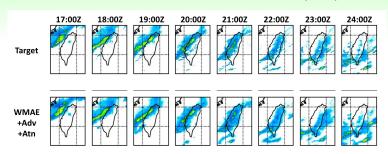
Generative Al

Speak/Write/Draw

Two Properties of Generative AI

variation (creativity)

(Pictures Extracted from Ho et al. for educational purposes)


complexity (structure)

(Pictures Licensed under CC0 on Wikipedia)

Generative AI : complex outputs with variations

From AI to GAI: Is This GAI? (4/4)

predictive: time-series prediction; generative: complex output; or does it matter? (©)

A Story on Modern Generative Al

let's start with multi-pixel regression

WMAE

regression model feels "safer" to predict a bit of rain

appears always raining, why?

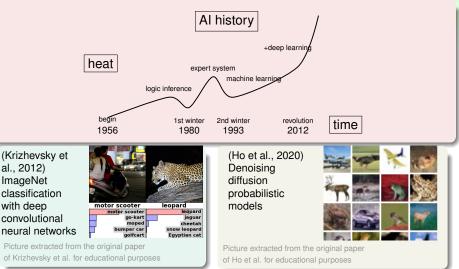
let's force no-rain by discretizing regression output

multi-pixel regression + discretization lack details

looks unnatural, why?

force human-indistinguishable by generative AI

modern generative AI with mixed tools:



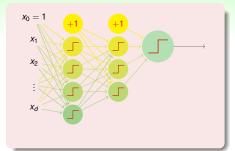
History (?): From Recognition to Generation

deep learning (neural network) speeds up realizing modern Al

al., 2012)

ImageNet classification

with deep


convolutional

Neural Network: from Bird to Airplanes

by UC Regents Davis campus-brainmaps.org.

Licensed under CC BY 3.0 via Wikimedia Commons

by Lauris Rubenis. Licensed under CC BY 2.0 via https://flic.kr/

by Pedro Ribeiro Simões. Licensed under CC BY 2.0 via https://flic.kr/ p/adiv7b

neural network: a bio-inspired model

From Wright Flyer (1903)

to Commercial Airplanes (1919–)

by Wright Brothers. Licensed under Public Domain via US Library of Congress

by Pedro Ribeiro Simões. Licensed under CC BY 2.0 via https://flic.kr/ p/adiv7b

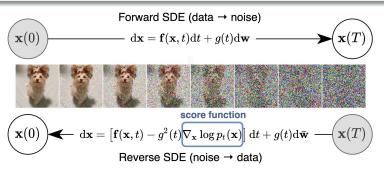
we are at wright-flyer-age of (generative) Al

What's Needed before Wider Acceptance

- war? 🙂
- technology advancements
 - —like lighter materials, more efficient engines, better control
- regulations
 - —like laws, licenses, etc.
- trials
 - —understanding success and failure cases

will discuss research on better control

Score-based Generative Model (SGM)


SGM

generated image $\mathbf{x} \leftarrow$

← random image z

(Free Content Use from https://pixabay.com/vectors/robot-machine-technology-science-312566/)

(Figure 1 from Song et al., ICLR 2021)

high-quality generation when score function can be estimated

Conditional SGM

SGM

high-quality unconditional generation when $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ can be estimated

Conditional SGM

generated x ←

 \leftarrow random **z** & y = dog

(Free Content Use from https://pixabay.com/vectors/robot-machine-technology-science-312566/)

Conditional SGM

high-quality conditional generation when $\nabla_{\mathbf{x}} \log p(\mathbf{x}|y)$ can be estimated

Hello, Bayes Rule

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}|y) = \underbrace{\nabla_{\mathbf{x}} \log p(\mathbf{x})}_{\text{unconditional score}} + \underbrace{\nabla_{\mathbf{x}} \log p(y|\mathbf{x})}_{\text{classifier gradient}} - \underbrace{\nabla_{\mathbf{x}} \log p(y)}_{0}$$

simple CGSGM by classifier guidance + unconditional SGM

Our Contributions

manuscript: Paul Kuo-Ming Huang, Si-An Chen, and Hsuan-Tien Lin. Semi-Supervised Classifier Guidance with Self-Calibration for Conditional Score-Based Generation.

our impacts: an in-depth study of cSGM, which ...

- makes its classifier design more robust with a novel angle of regularization
- · reduces the use of labeled data significantly
- achieves state-of-the-art conditional generation performance in semi-supervised setting

next: our fundamental research attempt

Simple CGSGM

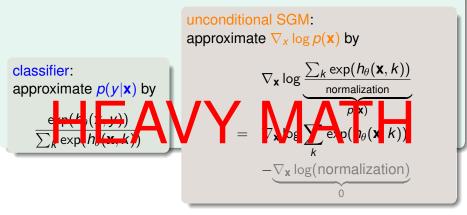
$$\nabla_{\mathbf{x}} \log p(\mathbf{x}|y) = \underbrace{\nabla_{\mathbf{x}} \log p(\mathbf{x})}_{\text{unconditional score}} + \underbrace{\nabla_{\mathbf{x}} \log p(y|\mathbf{x})}_{\text{classifier gradient}}$$

Pros

- easy reuse of well-trained unconditional SGM
- naturally applicable to semi-supervised data (few labeled data)

Cons

overfitting classifier


⇒ bad conditional score

⇒ bad conditional generation

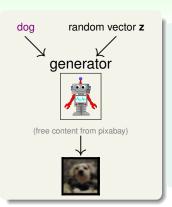
but few labeled data ⇒ overfitting classifier?!

Key Idea: Align Classifier with Unconditional SGM

energy-based parameterization $\exp(h_{\theta}(\mathbf{x},y)) \propto p(\mathbf{x},y)$

classifier can regularize itself by viewing from angle of unconditional SGM (proof omitted \odot)

Comparison to Original CGSGM


with merely 5% of labeled data

ours: better quality & more accurate

Technical Summary

- creativity can go wild
 —regularization by another view helps control
 - improved CGSGM: another view of classifier as unconditional SGM
- most importantly, math helps!

 more efforts on fundamental research needed
 - energy-based parameterization helps

enough about boring research \odot , let's share some final wisdom

My Thoughts after Research/(Teaching) Attempts

need research on process

manipulation challenge

generating something is easy; generating good thing is difficult

—need research on control

certification challenge

trying is easy; systematic testing is difficult

-need research on evaluation

let's research more to move GAI

to trustworthy commercial tools