Attempts Towards Controllable Generation

Hsuan-Tien Lin 林軒田

Professor, National Taiwan University

August 10, 2023, NTUILO x MITILP Consortia

H.-T. Lin (NTU)

About Me

research goal: making machine more realistic

H.-T. Lin (NTU)

Outline

Si-An Chen, Chun-Liang Li, and Hsuan-Tien Lin. A unified view of cGANs with and without classifiers. NeurIPS 2021.

Paul Kuo-Ming Huang, Si-An Chen, and Hsuan-Tien Lin. Score-based conditional generation with fewer labeled data by self-calibrating classifier guidance. Work-In-Progress 2023.

Generative Models

generative models: creativity for machines

Generative Adversarial Network (GAN)

high-quality generation when generator can fool the discriminator

Conditional Generative Adversarial Network (cGAN)

high-quality conditional (i.e. **controllable**) generation when generator can **fool the conditional discriminator**

H.-T. Lin (NTU)

Existing Attempts to Design cGANs

can we **comprehensively** understand and improve them?

H.-T. Lin (NTU)

Our Contributions

a comprehensive study of cGANs, which ...

- **explains** the designs of classifier loss, unconditional loss, conditional loss, contrastive loss in principle
- **unifies** ACGAN, ProjGAN, ContraGAN to a new architecture **ECGAN** with the principled explanation
- achieves state-of-the-art conditional generation performance with the unification

will describe key ideas behind the unification without detailed math

Idea 1: Connecting Loss Terms

- classifier loss: for estimating $p(y|\mathbf{x})$
- unconditional loss: for estimating p(x)
- conditional loss: for estimating $p(\mathbf{x}|y)$

-how do they connect?

Bayes Rule

$$\log p(\mathbf{x}, y) = \log p(\mathbf{x}|y) + \bigcup_{y \in \mathcal{Y}} \log p(y)$$

assumed as known constants

 $= \log p(y|\mathbf{x}) + \log p(\mathbf{x})$

unifying view \Rightarrow estimate joint distribution $p(\mathbf{x}, \mathbf{y})$ better from different angles

Idea 2: Energy-Based Parameterization

unifying view

estimate $p(\mathbf{x}, y)$ from different angles

energy-based parameterization

• if $\exp(h_{\theta}(\mathbf{x}, y)) \propto p(\mathbf{x}, y)$,

$$\log p(\mathbf{x}, y) = \underbrace{h_{\theta}(\mathbf{x}, y)}_{-\log(\text{normalization term})}$$

neural network

log(normalization term) ≈ contrastive loss (proof omitted ☺)

ECGAN (Energy-based Conditional GAN): unifying view + energy-based parameterization

- unifying view: stabilizes estimation by two angles instead of one
- energy-based parameterization: explains contrastive loss as regularization from energy normalization

not just ad-hoc combination, but **principled design from math**

H.-T. Lin (NTU)

The Unified ECGAN Family

complete ECGAN:

2-angle with classifier (w/ or w/o contrastive)

H.-T. Lin (NTU)

Evaluation Setting

Data

	# training	# test	# classes	resolution
CIFAR-10	50,000	10,000	10	32x32
Tiny ImageNet	100,000	10,000	200	64x64
ImageNet	1,281,167	50,000	1,000	128x128

Evaluation Metrics

- Frechet Inception Distance (FID) (↓): unconditional generation goodness
- Inception Score (IS) (⁺): unconditional image quality
- intra-FID (per-class FID) (\downarrow): conditional generation goodness

is complete ECGAN better?

Comparison to Existing cGANs

Dataset	Backbone	method	$FID(\downarrow)$	IS (†)	Intra-FID (\downarrow)
CIFAR-10	DCGAN	ACGAN	32.507 ± 2.174	7.621 ± 0.088	129.603 ± 1.212
		ProjGAN	21.918 ± 1.580	8.095 ± 0.185	68.164 ± 2.055
		ContraGAN	28.310 ± 1.761	7.637 ± 0.125	153.730 ± 9.965
		ECGAN-UC	$\textbf{18.035} \pm 0.788$	$\textbf{8.487} \pm 0.131$	$\textbf{59.343} \pm 1.557$
	ResGAN	ACGAN	10.073 ± 0.274	9.512 ± 0.050	48.464 ± 0.716
		ProjGAN	10.195 ± 0.203	9.268 ± 0.139	46.598 ± 0.070
		ContraGAN	10.551 ± 0.976	9.087 ± 0.228	138.944 ± 12.582
		ECGAN-UC	$\textbf{9.244} \pm 0.062$	$\textbf{9.651} \pm 0.098$	$\textbf{43.876} \pm 0.384$
	BigGAN	ACGAN	8.615 ± 0.146	9.742 ± 0.041	45.243 ± 0.129
		ProjGAN	8.145 ± 0.156	9.840 ± 0.080	42.110 ± 0.405
		ContraGAN	8.617 ± 0.671	9.679 ± 0.210	114.602 ± 13.261
		ECGAN-UC	$\textbf{7.942} \pm 0.041$	$\textbf{10.002} \pm 0.120$	$\textbf{41.425} \pm 0.221$
Tiny ImageNet	BigGAN	ACGAN	29.528 ± 4.612	12.964 ± 0.770	315.408 ± 1.171
		ProjGAN	28.451 ± 2.242	12.213 ± 0.624	242.332 ± 11.447
		ContraGAN	24.915 ± 1.222	13.445 ± 0.371	257.657 ± 3.246
		ECGAN-UC	$\textbf{18.780} \pm 1.291$	$\textbf{17.475} \pm 1.052$	$\textbf{204.830} \pm 5.648$

is complete ECGAN (w/o contrastive) better? YES

State-of-the-art Performance (2021)

Method	$FID(\downarrow)$	IS(↑)
BigGAN*	24.68	28.63
ContraGAN*	25.16	25.25
ECGAN-UC	30.05	26.47
ECGAN-UCE	12.16	56.33
ECGAN-UCE (40k step)	8.49	80.69

Table 6: Evaluation on ImageNet128×128. (*: Reported by StudioGAN.)

(StudioGAN: https://github.com/POSTECH-CVLab/PyTorch-StudioGAN)

deeper mathematical understanding \implies state-of-the-art performance

high-quality **controllable** generation somewhat achieved

H.-T. Lin (NTU)

a comprehensive study of cGANs, which ...

- **explains** the designs of classifier loss, unconditional loss, conditional loss, contrastive loss in principle
 - connecting three loss terms with Bayes rule
 - applying energy-based models to reveal contrastive loss
- **unifies** ACGAN, ProjGAN, ContraGAN to a new architecture **ECGAN** with the principled explanation

achieves state-of-the-art conditional generation

performance with the unification

fundamental research on **math principles** \implies controllability

H.-T. Lin (NTU)

Si-An Chen, Chun-Liang Li, and Hsuan-Tien Lin. A unified view of cGANs with and without classifiers. NeurIPS 2021.

Paul Kuo-Ming Huang, Si-An Chen, and Hsuan-Tien Lin. Score-based conditional generation with fewer labeled data by self-calibrating classifier guidance. Work-In-Progress 2023.

high-quality generation when **score function** can be estimated

H.-T. Lin (NTU)

Conditional SGM

SGM

high-quality unconditional generation when $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ can be estimated

Conditional SGM

high-quality conditional generation when $\nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{y})$ can be estimated

Hello Again, Bayes Rule

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{y}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{y})$$

$$V_{\mathbf{X}} \log p(\mathbf{X})$$
 unconditional score

$$+\underbrace{\nabla_{\mathbf{x}}\log p(\mathbf{y}|\mathbf{x})}_{\mathbf{x}}$$

classifier gradient

$-\nabla_{\mathbf{x}} \log p(\mathbf{y})$

simple CGSGM by classifier guidance + unconditional SGM

Simple CGSGM

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{y}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \nabla_{\mathbf{x}} \log p(\mathbf{y}|\mathbf{x})$$

unconditional score

classifier gradient

Pros

- easy reuse of well-trained unconditional SGM
- naturally applicable to semi-supervised data (few labeled data)

Cons overfitting classifier ⇒ bad conditional score ⇒ bad conditional generation

but **few labeled data** \Rightarrow overfitting classifier?!

H.-T. Lin (NTU)

classifier guidance. Work-In-Progress 2023. Key Idea: Align Classifier with Unconditional SGM energy-based parameterization $\exp(h_{\theta}(\mathbf{x}, y)) \propto p(\mathbf{x}, y)$ unconditional SGM approximate $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ by $\nabla_{\mathbf{x}} \log \frac{\sum_{k} \exp(h_{\theta}(\mathbf{x}, k))}{\text{normalization}}$ classifier: approximate $p(y|\mathbf{x})$ by $p(\mathbf{x})$ $\exp(h_{\theta}(\mathbf{x}, \mathbf{y}))$ $= \nabla_{\mathbf{X}} \log \sum_{k} \exp(h_{\theta}(\mathbf{X}, k))$ $\overline{\sum_{k} \exp(h_{\theta}(\mathbf{x}, k))}$ $-\nabla_{\mathbf{x}} \log(\text{normalization})$ classifier can cosplay as (be cast to) unconditional SGM

can **regularize** classifier by its unconditional SGM loss to avoid overfitting (proof omitted C)

H.-T. Lin (NTU)

Comparison to Original CGSGM

with merely 5% of labeled data

ours: better quality & more accurate

H.-T. Lin (NTU)

Short Take-Home Messages

- creativity can go wild —regularization by another view helps
 - ECGAN: another view by decomposing joint probability
 - improved CGSGM: another view by casting classifier as unconditional SGM
- most importantly, math helps! —more efforts on fundamental research needed
 - Bayes rule helps
 - energy-based parameterization helps

Thank you! Questions?

Appendix: Image Citations

Except for images from our papers, other images are cited as follows:

• Rree Content Use from https:

//pixabay.com/vectors/robot-machine-technology-science-312566/

CC-0 from https://bioicons.com/icons/cc-0/Molecular_modelling/ Simon_Dürr/smiles.svg

CC-0 from

https://commons.wikimedia.org/wiki/File:Demonic_possession.jpg

CC-0 from https://commons.wikimedia.org/wiki/File:Detective.svg

