Attempts Towards Controllable Generation

Hsuan-Tien Lin 林軒田

Professor, National Taiwan University

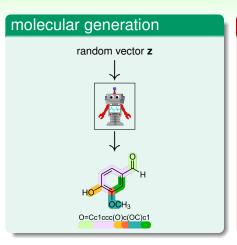
December 1, 2023, Institute of Statistics, National Tsing Hua University

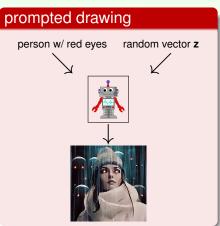
Outline

Si-An Chen, Chun-Liang Li, and Hsuan-Tien Lin. A unified view of cGANs with and without classifiers. NeurIPS 2021.

Paul Kuo-Ming Huang, Si-An Chen, and Hsuan-Tien Lin. Score-based conditional generation with fewer labeled data by self-calibrating classifier guidance. Work-In-Progress 2023.

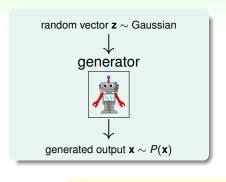
Generative Models

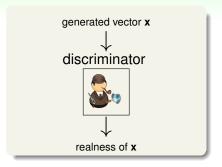




generative models: creativity for machines

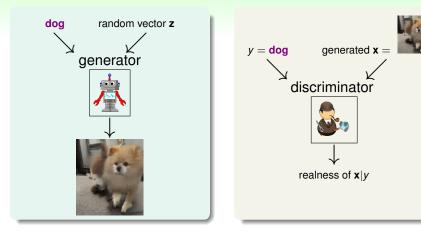
Generative Adversarial Network (GAN)





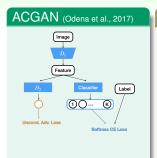
high-quality generation when generator can fool the discriminator

Conditional Generative Adversarial Network (cGAN)

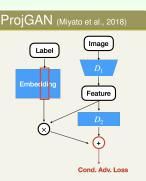


high-quality conditional (i.e. **controllable**) generation when generator can **fool the conditional discriminator**

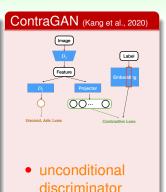
Existing Attempts to Design cGANs



- unconditional discriminator
- classifier



 conditional discriminator



contrastive loss

can we **comprehensively** understand and improve them?

Our Contributions

a comprehensive study of cGANs, which ...

- explains the designs of classifier loss, unconditional loss, conditional loss, contrastive loss in principle
- unifies ACGAN, ProjGAN, ContraGAN to a new architecture ECGAN with the principled explanation
- achieves state-of-the-art conditional generation performance with the unification

will describe key ideas behind the unification without detailed math

Idea 1: Connecting Loss Terms

- classifier loss: for estimating $p(y|\mathbf{x})$
- unconditional loss: for estimating $p(\mathbf{x})$
- conditional loss: for estimating $p(\mathbf{x}|y)$
- —how do they connect?

Bayes Rule

$$\log p(\mathbf{x}, y) = \log p(\mathbf{x}|y) + \underbrace{\log p(y)}_{\text{assumed as known constants}}$$
$$= \log p(y|\mathbf{x}) + \log p(\mathbf{x})$$

unifying view \Rightarrow estimate joint distribution $p(\mathbf{x}, \mathbf{v})$ better **from different angles**

Idea 2: Energy-Based Parameterization

unifying view

estimate $p(\mathbf{x}, y)$ from different angles

energy-based parameterization

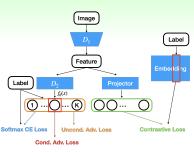
• if $\exp(h_{\theta}(\mathbf{x}, y)) \propto p(\mathbf{x}, y)$,

$$\log p(\mathbf{x}, y) = \underbrace{h_{\theta}(\mathbf{x}, y)}_{\text{neural network}} - \log(\text{normalization term})$$

log(normalization term) ≈ contrastive loss (proof omitted ⊕)

ECGAN (Energy-based Conditional GAN): unifying view + energy-based parameterization

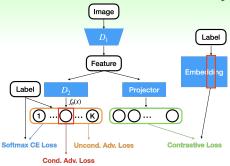
ECGAN



- unifying view: stabilizes estimation by two angles instead of one
- energy-based parameterization: explains contrastive loss as regularization from energy normalization

not just ad-hoc combination, but **principled design from math**

The Unified ECGAN Family



ACGAN (Odena et al., 2017)

1-angle ECGAN without contrastive

ProjGAN (Miyato et al., 2018)

1-angle ECGAN without classifier and contrastive

ContraGAN (Kang et al., 2020)

1-angle ECGAN without classifier

complete ECGAN:

2-angle with classifier (w/ or w/o contrastive)

Evaluation Setting

Data

	# training	# test	# classes	resolution
CIFAR-10	50,000	10,000	10	32x32
Tiny ImageNet	100,000	10,000	200	64x64
ImageNet	1,281,167	50,000	1,000	128x128

Evaluation Metrics

- Frechet Inception Distance (FID) (↓): unconditional generation goodness
- Inception Score (IS) (†): unconditional image quality
- intra-FID (per-class FID) (↓): conditional generation goodness

is complete ECGAN better?

Comparison to Existing cGANs

Dataset	Backbone	method	FID (↓)	IS (†)	Intra-FID (↓)
Datasci	Dackbone				117
CIFAR-10	DCGAN	ACGAN	32.507 ± 2.174	7.621 ± 0.088	129.603 ± 1.212
		ProjGAN	21.918 ± 1.580	8.095 ± 0.185	68.164 ± 2.055
		ContraGAN	28.310 ± 1.761	7.637 ± 0.125	153.730 ± 9.965
		ECGAN-UC	18.035 ± 0.788	8.487 ± 0.131	59.343 ± 1.557
	ResGAN	ACGAN	10.073 ± 0.274	9.512 ± 0.050	48.464 ± 0.716
		ProjGAN	10.195 ± 0.203	9.268 ± 0.139	46.598 ± 0.070
		ContraGAN	10.551 ± 0.976	9.087 ± 0.228	138.944 ± 12.582
		ECGAN-UC	9.244 ± 0.062	9.651 ± 0.098	43.876 ± 0.384
	BigGAN	ACGAN	8.615 ± 0.146	9.742 ± 0.041	45.243 ± 0.129
		ProjGAN	8.145 ± 0.156	9.840 ± 0.080	42.110 ± 0.405
		ContraGAN	8.617 ± 0.671	9.679 ± 0.210	114.602 ± 13.261
		ECGAN-UC	7.942 ± 0.041	10.002 ± 0.120	41.425 ± 0.221
Tiny ImageNet	BigGAN	ACGAN	29.528 ± 4.612	12.964 ± 0.770	315.408 ± 1.171
		ProjGAN	28.451 ± 2.242	12.213 ± 0.624	242.332 ± 11.447
		ContraGAN	24.915 ± 1.222	13.445 ± 0.371	257.657 ± 3.246
		ECGAN-UC	18.780 ± 1.291	17.475 ± 1.052	204.830 ± 5.648

is **complete ECGAN** (w/o contrastive) better?

YES

State-of-the-art Performance (2021)

Method	FID(↓)	IS(↑)
BigGAN*	24.68	28.63
ContraGAN*	25.16	25.25
ECGAN-UC	30.05	26.47
ECGAN-UCE	12.16	56.33
ECGAN-UCE (40k step)	8.49	80.69

Table 6: Evaluation on ImageNet128×128. (*: Reported by StudioGAN.)

(StudioGAN: https://github.com/POSTECH-CVLab/PyTorch-StudioGAN)

deeper mathematical understanding

⇒ state-of-the-art performance

Generated Images from ECGAN

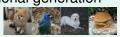
high-quality **controllable** generation somewhat achieved

Half Summary

a comprehensive study of cGANs, which ...

- **explains** the designs of classifier loss, unconditional loss, conditional loss, contrastive loss in principle
 - connecting three loss terms with Bayes rule
 - applying energy-based models to reveal contrastive loss
- unifies ACGAN, ProjGAN, ContraGAN to a new architecture **ECGAN** with the principled explanation

achieves state-of-the-art conditional generation performance with the unification



fundamental research on math principles ⇒ controllability

Outline

Si-An Chen, Chun-Liang Li, and Hsuan-Tien Lin. A unified view of cGANs with and without classifiers. NeurIPS 2021.

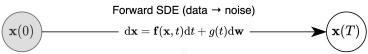
Paul Kuo-Ming Huang, Si-An Chen, and Hsuan-Tien Lin. Score-based conditional generation with fewer labeled data by self-calibrating classifier guidance. Work-In-Progress 2023.

Score-based Generative Model (SGM)

SGM

generated image x

← random image z



score function
$$\mathbf{x}(0) \blacktriangleleft \mathbf{d}\mathbf{x} = \left[\mathbf{f}(\mathbf{x},t) - g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\right] dt + g(t) d\bar{\mathbf{w}} - \mathbf{x}(T)$$
Reverse SDE (noise \rightarrow data)

(Song et al., ICLR 2021)

high-quality generation when **score function** can be estimated

Conditional SGM

SGM

high-quality unconditional generation when $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ can be estimated

Conditional SGM

high-quality conditional generation when $\nabla_{\mathbf{x}} \log p(\mathbf{x}|y)$ can be estimated

Hello Again, Bayes Rule

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}|y) = \underbrace{\nabla_{\mathbf{x}} \log p(\mathbf{x})}_{\text{unconditional score}} + \underbrace{\nabla_{\mathbf{x}} \log p(y|\mathbf{x})}_{\text{classifier gradient}} - \underbrace{\nabla_{\mathbf{x}} \log p(y)}_{0}$$

simple CGSGM

by classifier guidance + unconditional SGM

Simple CGSGM

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}|y) = \underbrace{\nabla_{\mathbf{x}} \log p(\mathbf{x})}_{\text{unconditional score}} + \underbrace{\nabla_{\mathbf{x}} \log p(y|\mathbf{x})}_{\text{classifier gradient}}$$

Pros

- easy reuse of well-trained unconditional SGM
- naturally applicable to semi-supervised data (few labeled data)

Cons

overfitting classifier

- ⇒ bad conditional score
- ⇒ bad conditional generation

but **few labeled data** ⇒ overfitting classifier?!

Key Idea: Align Classifier with Unconditional SGM

energy-based parameterization $\exp(h_{\theta}(\mathbf{x},y)) \propto p(\mathbf{x},y)$

classifier:

approximate $p(y|\mathbf{x})$ by

$$\frac{\exp(h_{\theta}(\mathbf{x}, y))}{\sum_{k} \exp(h_{\theta}(\mathbf{x}, k))}$$

unconditional SGM: approximate $\nabla_x \log p(\mathbf{x})$ by

$$\nabla_{\mathbf{x}} \log \underbrace{\frac{\sum_{k} \exp(h_{\theta}(\mathbf{x}, k))}{\text{normalization}}}_{p(\mathbf{x})}$$

$$= \nabla_{\mathbf{x}} \log \sum_{k} \exp(h_{\theta}(\mathbf{x}, k))$$

$$-\underbrace{\nabla_{\mathbf{x}} \log(\text{normalization})}_{0}$$

classifier can cosplay as (be cast to) unconditional SGM

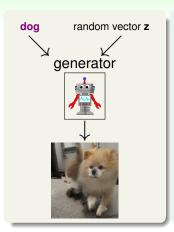
can **regularize** classifier by its unconditional SGM loss to avoid overfitting (proof omitted \odot)

Comparison to Original CGSGM

with merely 5% of labeled data

ours: better quality & more accurate

Short Take-Home Messages



- creativity can go wild
 —regularization by another view helps
 - ECGAN: another view by decomposing joint probability
 - improved CGSGM: another view by casting classifier as unconditional SGM
- most importantly, math helps!

 —more efforts on fundamental research needed
 - Bayes rule helps
 - energy-based parameterization helps

Thank you! Questions?

Appendix: Image Citations

Except for images from our papers, other images are cited as follows:

- Free Content Use from https: //pixabay.com/vectors/robot-machine-technology-science-312566/
- CC-0 from https://bioicons.com/icons/cc-0/Molecular_modelling/ Simon Dürr/smiles.svg
- CC-0 from https://commons.wikimedia.org/wiki/File:Demonic_possession.jpg
- CC-0 from https://commons.wikimedia.org/wiki/File:Detective.svg

: Figure 1 from Song et al., ICLR 2021

https://openreview.net/forum?id=PxTIG12RRHS