Active Learning by Learning

Hsuan-Tien Lin
htlin@csie.ntu.edu.tw
National Taiwan University

Webminar for UBC Centre for Artificial Intelligence Decision-making and Action on January 14, 2021

joint work with Wei-Ning Hsu (AAAI 2015)
About Me

Professor
National Taiwan University

Chief Data Science Consultant
(former Chief Data Scientist)
Appier Inc.

Co-author
Learning from Data

Instructor
NTU-Coursera Mandarin MOOCs
ML Foundations/Techniques

Active Learning by Learning
Active Learning

Apple Recognition Problem

Note: Slide Taken from my “ML Techniques” MOOC

- need **apple classifier**: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (*thanks to the authors below!*) and **label them as apple/other** for learning

(APAL stands for Apple and Pear Australia Ltd)

Dan Foy
https://flic.kr/p/jNQ55

APAL
https://flic.kr/p/jzP1VB

adrianbartel
https://flic.kr/p/bedy2hZ

ANdrzej cH.
https://flic.kr/p/51DKA8

Stuart Webster
https://flic.kr/p/9C3Ybd

nachans
https://flic.kr/p/9XD7Ag

APAL
https://flic.kr/p/jzRe4u

Jo Jakeman
https://flic.kr/p/7jwtGp

APAL
https://flic.kr/p/jzPYNr

APAL
https://flic.kr/p/jzScif
Active Learning

Apple Recognition Problem

Note: Slide Taken from my “ML Techniques” MOOC

- need **apple classifier**: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker *(thanks to the authors below!)* and label them as apple/other for learning

Mr. Roboto.
https://flic.kr/p/i5BN85

Richard North
https://flic.kr/p/bHhPkB

Richard North
https://flic.kr/p/d8tGou

Emilian Vicol
https://flic.kr/p/bpmGXW

Robert North
https://flic.kr/p/pZv1Mf

Crystal jfh686
https://flic.kr/p/kaPYp

jfh686
https://flic.kr/p/6vjRFH

skyseeker
https://flic.kr/p/2MynV

Janet Hudson
https://flic.kr/p/7QDBbm

Rennett Stowe
https://flic.kr/p/agmnrk
Active Learning: Learning by ‘Asking’

but labeling is **expensive**

Protocol ⇔ Learning Philosophy

- **batch**: ‘duck feeding’
- **active**: ‘question asking’ (iteratively)
 — query \(y_n \) of chosen \(x_n \)

unknown target function \(f: \mathcal{X} \rightarrow \mathcal{Y} \)

+1

labeled training examples
\((\text{apple}, +1), (\text{orange}, +1), (\text{grape}, +1)\)
\((\text{banana}, -1), (\text{grape}, -1), (\text{grape}, -1)\)

unlabeled training examples
\((\text{grape}), (\text{grape}), (\text{grape}), (\text{grape})\)

learning algorithm \(\mathcal{A} \)

final hypothesis \(g \approx f \)

active: improve hypothesis with fewer labels (hopefully) by asking questions **strategically**
Pool-Based Active Learning Problem

Given

- labeled pool $\mathcal{D}_l = \{(\text{feature } x_n, \text{label } y_n \text{ (e.g. IsApple?)})\}_{n=1}^N$
- unlabeled pool $\mathcal{D}_u = \{\tilde{x}_s\}_{s=1}^S$

Goal

design an algorithm that iteratively

1. **strategically query** some \tilde{x}_s to get associated \tilde{y}_s
2. move $(\tilde{x}_s, \tilde{y}_s)$ from \mathcal{D}_u to \mathcal{D}_l
3. learn **classifier** $g^{(t)}$ from \mathcal{D}_l

and improve **test accuracy of** $g^{(t)}$ w.r.t #queries

how to query strategically?
How to Query Strategically?

Strategy 1
ask most confused question

Strategy 2
ask most frequent question

Strategy 3
ask most helpful question

do you use a fixed strategy in practice? 😊
Choice of Strategy

Strategy 1: Uncertainty
- Ask **most confused** question

Strategy 2: Representative
- Ask **most frequent** question

Strategy 3: Exp.-err. Reduction
- Ask **most helpful** question

- **choosing** one single strategy is **non-trivial**:

- **human-designed strategy** heuristic and **confine** machine’s ability

- Can we **free** the machine 😊 by letting it **learn to choose** the strategies?
Our Contributions

*a philosophical and algorithmic study of active learning, which ...

- allows machine to make **intelligent choice of strategies**, just like my **cute kids**
- studies **sound feedback scheme** to tell machine about goodness of choice, just like what I do
- results in **promising active learning performance**, just like (hopefully) bright future of my kids 😊

will describe **key philosophical ideas** behind our proposed approach
Online Choice of Strategy

Idea: Trial-and-Reward Like Human

by DFID - UK Department for International Development;
licensed under CC BY-SA 2.0 via Wikimedia Commons

\[K \text{ strategies: } A_1, A_2, \ldots, A_K \]

- try one strategy

“goodness” of strategy as reward

two issues: try and reward
when do humans trial-and-reward? gambling 😊

- trial one strategy
 - “goodness” of strategy as reward

- try one bandit machine
 - “luckiness” of machine as reward

- will take one well-known probabilistic bandit learner (EXP4.P)

- intelligent choice of strategy
 => intelligent choice of bandit machine
Online Choice of Strategy

Active Learning by Learning

Given: K existing active learning strategies

For $t = 1, 2, \ldots, T$

1. Let EXP4.P decide strategy A_k to try
2. Query the \tilde{x}_s suggested by A_k, and compute $g^{(t)}$
3. Evaluate goodness of $g^{(t)}$ as reward of trial to update EXP4.P

Only remaining problem: what reward?
ideal reward after updating classifier $g(t)$ by the query (x_{nt}, y_{nt}):

\[
\text{accuracy } \frac{1}{M} \sum_{m=1}^{M} \left[y_m = g(t)(x_m) \right] \text{ on test set } \{ (x_m, y_m) \}_{m=1}^{M}
\]

- **test accuracy** as reward:
 area under query-accuracy curve \(\equiv\) cumulative reward

- **test accuracy** infeasible in practice
 —labeling expensive, remember? 😊

difficulty: approximate test accuracy on the fly
Training Accuracy as Reward

Design of Reward

Training Accuracy as Reward

\[
\text{test accuracy } \frac{1}{M} \sum_{m=1}^{M} \left[y_m = g^{(t)}(x_m) \right] \text{ infeasible, naïve replacement:}
\]

\[
\text{accuracy } \frac{1}{t} \sum_{\tau=1}^{t} \left[y_{n_\tau} = g^{(t)}(x_{n_\tau}) \right] \text{ on labeled pool } \{(x_{n_\tau}, y_{n_\tau})\}_{\tau=1}^{t}
\]

- **training accuracy** as reward:
 - **training accuracy** \(\approx \) **test accuracy**?

- not necessarily!!
 —for active learning strategy that asks *easiest* questions:
 - **training accuracy** high: \(x_{n_\tau} \) easy to label
 - **test accuracy** low: not enough information about *harder instances*

- **training accuracy**: too **biased** to approximate **test accuracy**
Design of Reward

Weighted Training Accuracy as Reward

Training accuracy $\frac{1}{t} \sum_{\tau=1}^{t} \mathbb{1}[y_{n\tau} = g^{(t)}(x_{n\tau})]$ biased, want **less-biased estimator**

- **non-uniform sampling** theorem: if $(x_{n\tau}, y_{n\tau})$ sampled with probability $p_{\tau} > 0$ from data set $\{(x_n, y_n)\}_{n=1}^{N}$ in iteration τ,

 \[
 \text{weighted training accuracy} \quad \frac{1}{t} \sum_{\tau=1}^{t} \frac{1}{p_{\tau}} \mathbb{1}[y_{n\tau} = g(x_{n\tau})] \]

 \[\approx \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}[y_n = g(x_n)] \text{ in expectation}\]

- with **probabilistic query** like EXP4.P:
 \[
 \text{weighted training accuracy} \approx \text{test accuracy}
 \]

weighted training accuracy: **less biased** approx. of test accuracy on the fly
Design of Reward

Active Learning by Learning (Hsu and Lin, 2015)

Given: K existing active learning strategies

for $t = 1, 2, \ldots, T$

1. let EXP4.P decide strategy \mathcal{A}_k to try
2. query the \tilde{x}_s suggested by \mathcal{A}_k, and compute $g^{(t)}$
3. evaluate weighted training accuracy of $g^{(t)}$ as reward of trial to update EXP4.P

other possible rewards?
Human-Designed Criterion as Reward

(Baram et al., 2004) COMB approach:

bandit + **balancedness** of $g(t)$ on unlabeled data as reward

- why? human criterion that matches classifier to **domain assumption**
- but many active learning applications are on **unbalanced data**!—assumption may be **unrealistic**

existing strategies: active learning **by acting**; COMB: active learning **by acting**; ours: active learning **by learning**
Experiments

Comparison with Single Strategies

UNCERTAIN Best

PSDS Best

QUIRE Best

- **no single best strategy** for every data set
 —choosing needed
- **ALBL** consistently **matches the best**
 —similar findings across other data sets

ALBL: effective in **making intelligent choices**
Experiments

Comparison with Other Bandit-Driven Algorithms

ALBL \approx \text{COMB}

\begin{figure}
\centering
\includegraphics[width=0.4\textwidth]{diabetes}
\caption{diabetes}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=0.4\textwidth]{sonar}
\caption{sonar}
\end{figure}

- **ALBL > ALBL-Train** generally
 - *importance-weighted* mechanism needed for correcting biased training accuracy

- **ALBL** consistently comparable to or better than \text{COMB}
 - *learning performance* more useful than human-criterion

ALBL: effective in utilizing performance
Active Learning by Learning

- based on **bandit learning** + **less biased performance estimator** as reward
- effective in **making intelligent choices** —comparable or superior to the best of existing strategies
- effective in **utilizing learning performance** —superior to human-criterion-based approach

open-source tool developed

https://github.com/ntucllab/libact
Discussion for Theoreticians

weighted training accuracy \(\frac{1}{t} \sum_{\tau=1}^{t} \frac{1}{p_{\tau}} \left[y_{n_{\tau}} = g^{(t)}(x_{n_{\tau}}) \right] \) as reward

- **is reward unbiased estimator of test performance?**
 no for learned \(g^{(t)} \) (yes for fixed \(g \))

- **is reward fixed before playing?**
 no because \(g^{(t)} \) learned from \((x_{n_t}, y_{n_t})\)

- **is reward independent of each other?**
 no because past history all in reward

ALBL: tools from theoreticians
 + wild/unintended usage
Have We Made Active Learning More Realistic? (1/2)

Yes!

open-source tool libact developed (Yang, 2017)
https://github.com/ntucllab/libact

- including uncertainty, QUIRE, PSDS, ..., and ALBL
- received > 500 stars and continuous issues

“libact is a Python package designed to make active learning easier for real-world users”
No!

- single-most raised **issue**: hard to install on Windows/Mac—because several strategies require some C packages
- performance in a recent industry project:

 - **uncertainty** sampling **often suffices**
 - ALBL **dragged down by bad strategy**

“**libact** is a Python package **designed to make active learning easier** for real-world users”
Other Attempts for Realistic Active Learning

“learn” a strategy **beforehand** rather than on-the-fly?

- transfer active learning experience (Chu and Lin, 2016)
- **not easy to realize** in open-source package

Other active learning tasks?

- NLP (Yuan et al., 2020)
- reinforcement learning (Chen et al., 2020)
- annotation cost-sensitive (Tsou and Lin, 2019)
- classification cost-sensitive (Huang and Lin, 2016)

many more needs to be satisfied: mini-batch, multi-label query, weak-label query, etc.
1. **scalability bottleneck** of artificial intelligence: choice of methods/models/parameter/...

2. think outside of the math box: ‘non-rigorous’ usage may be **good enough**

3. important to be **brave yet patient**
 - idea: 2012
 - paper: (Hsu and Lin, AAAI 2015);
 - software: (Yang et al., 2017)

4. easy-to-use in design ≠ **easy-to-use in reality**

Thank you! Questions?