Active Learning by Learning

Hsuan-Tien Lin

htlin@csie.ntu.edu.tw

National Taiwan University

Institute of Information Systems and Applications, National Tsing Hua University, March 23, 2022

joint work with Wei-Ning Hsu (AAAI 2015)

About Me

Professor National Taiwan University

Chief Data Science Consultant (former Chief Data Scientist)

Appier Inc.

Appier

Co-author Learning from Data

Instructor
NTU-Coursera Mandarin MOOCs
ML Foundations/Techniques

Apple Recognition Problem

Note: Slide Taken from my "ML Techniques" MOOC

- need apple classifier: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!) and label them as apple/other for learning

(APAL stands for Apple and Pear Australia Ltd)

Dan Foy https: //flic. kr/p/jNQ55

//flic. kr/p/jzP1VB

adrianbartel https: //flic. kr/p/bdv2hZ

ANdrzej cH. https: //flic. kr/p/51DKA8

Stuart Webster https: //flic. kr/p/9C3Ybd

kr/p/7jwtGp

APAL https: //flic. kr/p/jzPYNr

APAL https: //flic. kr/p/jzScif

Apple Recognition Problem

Note: Slide Taken from my "ML Techniques" MOOC

- need apple classifier: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!) and label them as apple/other for learning

Mr. Roboto.

https: //flic. kr/p/i5BN85

Crystal https: //flic. kr/p/kaPYp

Richard North

https: //flic. kr/p/bHhPkB

ifh686 https: //flic. kr/p/6viRFH

Richard North

https: //flic. kr/p/d8tGou

skyseeker https:

//flic. kr/p/2MvnV

Emilian Robert Vicol

https: //flic. kr/p/bpmGXW

Janet Hudson

https: //flic. kr/p/70DBbm

Nathaniel Mc-Queen

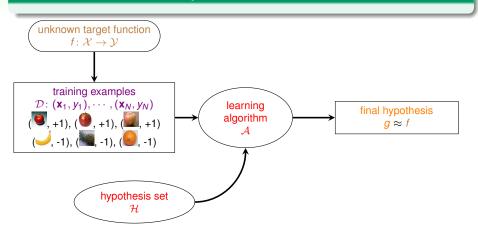
https: //flic. kr/p/pZv1Mf

Rennett Stowe

https: //flic. kr/p/agmnrk

Batch (Traditional) Machine Learning

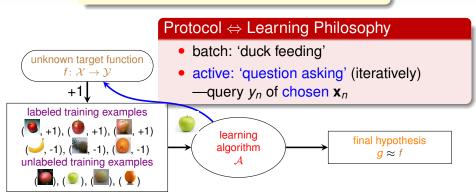
Note: Flow Taken from my "ML Foundations" MOOC



batch supervised classification: learn from fully labeled data

Active Learning: Learning by 'Asking'

but labeling is expensive



active: improve hypothesis with fewer labels (hopefully) by asking questions strategically

Pool-Based Active Learning Problem

Given

- labeled pool $\mathcal{D}_l = \left\{ (\text{feature } \mathbf{x}_n \ \bigcirc), \text{label } y_n \text{ (e.g. IsApple?)}) \right\}_{n=1}^N$
- ullet unlabeled pool $\mathcal{D}_u = \left\{ ilde{\mathbf{x}}_s ullet _s
 ight.
 ight.\}_{s=1}^S$

Goal

design an algorithm that iteratively

- **1** strategically query some $\tilde{\mathbf{x}}_s$ **6** to get associated \tilde{y}_s
- 2 move $(\tilde{\mathbf{x}}_s, \tilde{\mathbf{y}}_s)$ from \mathcal{D}_u to \mathcal{D}_l
- 3 learn classifier $g^{(t)}$ from \mathcal{D}_l

and improve test accuracy of $g^{(t)}$ w.r.t #queries

how to query strategically?

How to Query Strategically?

by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

Strategy 1

ask most confused question

Strategy 2

ask most frequent question

Strategy 3

ask most helpful question

do you use a fixed strategy in practice? 🙂

Choice of Strategy

Strategy 1: uncertainty

ask most confused question

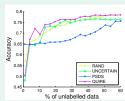
Strategy 2:

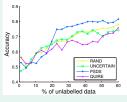
ask most frequent question

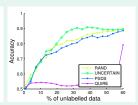
Strategy 3: exp.-err. reduction

ask most helpful question

• choosing one single strategy is non-trivial:







human-designed strategy heuristic and confine machine's ability

can we free the machine \odot by letting it learn to choose the strategies?

Our Contributions

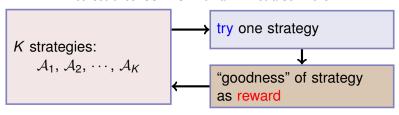
a philosophical and algorithmic study of active learning, which ...

- allows machine to make intelligent choice of strategies, just like my cute kids
- studies sound feedback scheme to tell machine about goodness of choice, just like what I do
- results in promising active learning performance, just like (hopefully) bright future of my kids

will describe key philosophical ideas behind our proposed approach

Idea: Trial-and-Reward Like Human

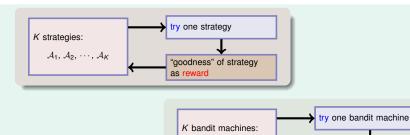
by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons



two issues: try and reward

Reduction to Bandit

when do humans trial-and-reward? gambling \odot



-will take one well-known probabilistic bandit learner (EXP4.P)

intelligent choice of strategy

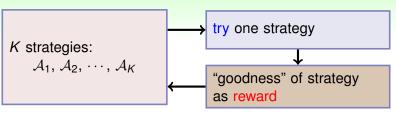
⇒ intelligent choice of bandit machine

 $\mathcal{B}_1, \mathcal{B}_2, \cdots, \mathcal{B}_K$

"luckiness" of machine

as reward

Active Learning by Learning



Given: *K* existing active learning strategies

for t = 1, 2, ..., T

- 1 let EXP4.P decide strategy A_k to try
- 2 query the \tilde{x}_s suggested by A_k , and compute $g^{(t)}$
- 3 evaluate goodness of $g^{(t)}$ as reward of trial to update EXP4.P

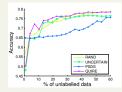
only remaining problem: what reward?

Ideal Reward

ideal reward after updating classifier $g^{(t)}$ by the query $(\mathbf{x}_{n_t}, y_{n_t})$:

accuracy
$$\frac{1}{M} \sum_{m=1}^{M} \left[y_m = g^{(t)}(\mathbf{x}_m) \right]$$
 on test set $\{ (\mathbf{x}_m, y_m) \}_{m=1}^{M}$

test accuracy as reward:
 area under query-accuracy curve = cumulative reward



test accuracy infeasible in practice
 —labeling expensive, remember? ②

difficulty: approximate test accuracy on the fly

Training Accuracy as Reward

test accuracy
$$\frac{1}{M}\sum_{m=1}^{M} \frac{g^{(t)}(\mathbf{x}_m)}{g^{(t)}(\mathbf{x}_m)}$$
 infeasible, naïve replacement:

accuracy
$$\frac{1}{t}\sum_{\tau=1}^t \left[y_{n_\tau} = g^{(t)}(\mathbf{x}_{n_\tau}) \right]$$
 on labeled pool $\{(\mathbf{x}_{n_\tau}, y_{n_\tau})\}_{\tau=1}^t$

- training accuracy as reward: training accuracy ≈ test accuracy?
- not necessarily!!
 —for active learning strategy that asks easiest questions:
 - training accuracy high: $\mathbf{x}_{n_{\tau}}$ easy to label
 - test accuracy low: not enough information about harder instances

training accuracy:

too biased to approximate test accuracy

Weighted Training Accuracy as Reward

training accuracy
$$\frac{1}{t}\sum_{\tau=1}^{t} \left[y_{n_{\tau}} g^{(t)}(\mathbf{x}_{n_{\tau}})\right]$$
 biased, want less-biased estimator

• non-uniform sampling theorem: if $(\mathbf{x}_{n_{\tau}}, y_{n_{\tau}})$ sampled with probability $p_{\tau} > 0$ from data set $\{(\mathbf{x}_{n}, y_{n})\}_{n=1}^{N}$ in iteration τ ,

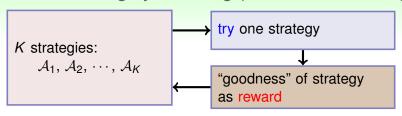
weighted training accuracy
$$\frac{1}{t} \sum_{\tau=1}^{t} \frac{1}{p_{\tau}} \llbracket y_{n_{\tau}} = g(\mathbf{x}_{n_{\tau}}) \rrbracket$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} [y_n = g(\mathbf{x}_n)]$$
 in expectation

 with probabilistic query like EXP4.P: weighted training accuracy ≈ test accuracy

weighted training accuracy:
less biased approx. of test accuracy on the fly

Active Learning by Learning (Hsu and Lin, 2015)



Given: K existing active learning strategies

for t = 1, 2, ..., T

- 1 let EXP4.P decide strategy A_k to try
- 2 query the \tilde{x}_s suggested by A_k , and compute $g^{(t)}$
- 3 evaluate weighted training accuracy of $g^{(t)}$ as reward of trial to update EXP4.P

other possible rewards?

Human-Designed Criterion as Reward

(Baram et al., 2004) COMB approach:

bandit + balancedness of $g^{(t)}$ on unlabeled data as reward

- why? human criterion that matches classifier to domain assumption
- but many active learning applications are on unbalanced data!
 —assumption may be unrealistic

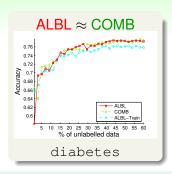
existing strategies: active learning by acting; COMB: active learning by acting; ours: active learning by learning

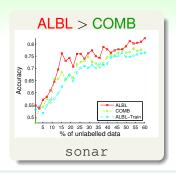
Comparison with Single Strategies

- no single best strategy for every data set —choosing needed
- ALBL consistently matches the best
 - -similar findings across other data sets

ALBL: effective in making intelligent choices

Comparison with Other Bandit-Driven Algorithms





- ALBL > ALBL-Train generally
 —importance-weighted mechanism needed for correcting biased training accuracy
- ALBL consistently comparable to or better than COMB
 —learning performance more useful than human-criterion

ALBL: effective in utilizing performance

Summary

Active Learning by Learning

- based on bandit learning + less biased performance estimator as reward
- effective in making intelligent choices
 - —comparable or superior to the best of existing strategies
- effective in utilizing learning performance
 - -superior to human-criterion-based approach

open-source tool developed

https://github.com/ntucllab/libact

Wait! Discussion and more!

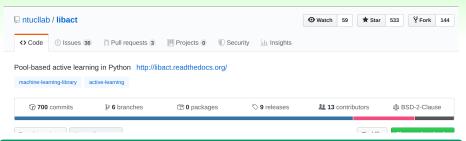
Discussion for Theoreticians

weighted training accuracy
$$\frac{1}{t}\sum_{\tau=1}^t \frac{1}{p_\tau} \left[\!\!\left[y_{n_\tau} = g^{(t)}(\mathbf{x}_{n_\tau}) \right]\!\!\right]$$
 as reward

- is reward unbiased estimator of test performance?
 no for learned g^(t) (yes for fixed g)
- is reward fixed before playing? no because $g^{(t)}$ learned from $(\mathbf{x}_{n_t}, \mathbf{y}_{n_t})$
- is reward independent of each other?
 no because past history all in reward

ALBL: tools from theoreticians + wild/unintended usage

Have We Made Active Learning More Realistic? (1/2)



Yes!

open-source tool libact developed (Yang, 2017)

https://github.com/ntucllab/libact

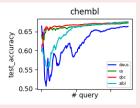
- including uncertainty, QUIRE, PSDS, ..., and ALBL
- received > 500 stars and continuous issues

"libact is a Python package designed to make active learning easier for real-world users"

Have We Made Active Learning More Realistic? (2/2)

No!

- single-most raised issue: hard to install on Windows/Mac
 because several strategies requires some C packages
- performance in a recent industry project:



- uncertainty sampling often suffices
- ALBL dragged down by bad strategy

"libact is a Python package designed to make active learning easier for real-world users"

Other Attempts for Realistic Active Learning

"learn" a strategy beforehand rather than on-the-fly?

- transfer active learning experience (Chu and Lin, 2016)
- —not easy to realize in open-source package

other active learning tasks?

- NLP (Yuan et al., 2020)
- reinforcement learning (Chen et al., 2020)
- annotation cost-sensitive (Tsou and Lin, 2019)
- classification cost-sensitive (Huang and Lin, 2016)

many more needs to be satisfied: mini-batch, multi-label query, weak-label query, etc.

Lessons Learned from Research on Active Learning by Learning

by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

- scalability bottleneck of artificial intelligence: choice of methods/models/parameter/...
- think outside of the math box: 'non-rigorous' usage may be good enough
- 3 important to be brave yet patient
 - idea: 2012
 - paper: (Hsu and Lin, AAAI 2015); software: (Yang et al., 2017)
- 4 easy-to-use in design \neq easy-to-use in reality

Thank you! Questions?