Active Learning by Learning

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering
National Taiwan University
(國立台灣大學資訊工程系)

joint work with Wei-Ning Hsu, presented in AAAI 2015
special thanks to TAAI’s scholarship for Wei-Ning’s AAAI trip
About Me
Hsuan-Tien Lin

- Associate Professor, Dept. of CSIE, National Taiwan University
- Leader of the Computational Learning Laboratory
- Co-author of the textbook “Learning from Data: A Short Course” (often ML best seller on Amazon)
- Instructor of the NTU-Coursera Mandarin-teaching ML Massive Open Online Courses
 - “Machine Learning Foundations”:
 www.coursera.org/course/ntum lone
 - “Machine Learning Techniques”:
 www.coursera.org/course/ntumltwo
Active Learning

Apple Recognition Problem

Note: Slide Taken from my “ML Techniques” MOOC

- need **apple classifier**: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (**thanks to the authors below!**) and **label them as apple/other** for learning

(APAL stands for Apple and Pear Australia Ltd)

- Dan Foy
 - https://flic.kr/p/jNQ55

- APAL
 - https://flic.kr/p/jzP1VB

- adrianbartel
 - https://flic.kr/p/bdy2hZ

- ANdrzej cH.
 - https://flic.kr/p/51DKA8

- Stuart Webster
 - https://flic.kr/p/9C3Ybd

- nachans
 - https://flic.kr/p/9XD7Ag

- APAL
 - https://flic.kr/p/jzRe4u

- Jo Jakeman
 - https://flic.kr/p/7jwtGp

- APAL
 - https://flic.kr/p/jzPYNr

- APAL
 - https://flic.kr/p/jzScif
Apple Recognition Problem

Note: Slide Taken from my “ML Techniques” MOOC

- need **apple classifier**: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (**thanks to the authors below!**) and **label them as apple/other for learning**

Mr. Roboto.
https://flic.kr/p/i5BN85

Richard North
https://flic.kr/p/bHhPkB

Richard North
https://flic.kr/p/d8tGou

Emilian Vicol
https://flic.kr/p/bpmGXW

Robert McQueen
https://flic.kr/p/pZv1Mf

Crystal
https://flic.kr/p/kaPYp

jf686
https://flic.kr/p/6vjRFH

skyseeker
https://flic.kr/p/2MynV

Janet Hudson
https://flic.kr/p/7QDBbm

Rennett Stowe
https://flic.kr/p/agmnrk
unknown target function

$$f : \mathcal{X} \rightarrow \mathcal{Y}$$

training examples

$$\mathcal{D} : (x_1, y_1), \ldots, (x_N, y_N)$$

$$\begin{align*}
(\text{apple}, +1), & (\text{banana}, +1), (\text{peach}, +1) \\
(\text{apple}, -1), & (\text{banana}, -1), (\text{peach}, -1)
\end{align*}$$

learning algorithm

$$\mathcal{A}$$

final hypothesis

$$g \approx f$$

hypothesis set

$$\mathcal{H}$$

batch supervised classification:

learn from **fully labeled** data
Active Learning: Learning by ‘Asking’

but labeling is **expensive**

Protocol ⇔ Learning Philosophy

- **batch**: ‘duck feeding’
- **active**: ‘question asking’ (iteratively)

—query y_n of chosen x_n

unknown target function $f : \mathcal{X} \to \mathcal{Y}$

labeled training examples

$(\text{apple}, +1), (\text{banana}, +1), (\text{apple}, +1)$

$(\text{banana}, -1), (\text{banana}, -1), (\text{apple}, -1)$

learning algorithm \mathcal{A}

final hypothesis $g \approx f$

hypothesis set \mathcal{H}

active: improve hypothesis with fewer labels (hopefully) by asking questions **strategically**
Pool-Based Active Learning Problem

Given

- labeled pool $\mathcal{D}_l = \{(\text{feature } x_n, \text{label } y_n \text{ (e.g. IsApple?)})\}_{n=1}^N$
- unlabeled pool $\mathcal{D}_u = \{\tilde{x}_s\}_{s=1}^S$

Goal

design an algorithm that iteratively

1. **strategically query** some \tilde{x}_s to get associated \tilde{y}_s
2. move $(\tilde{x}_s, \tilde{y}_s)$ from \mathcal{D}_u to \mathcal{D}_l
3. learn **classifier** $g^{(t)}$ from \mathcal{D}_l

and improve **test accuracy** of $g^{(t)}$ w.r.t #queries

how to **query strategically**?
How to Query Strategically?

Strategy 1: ask **most confused** question

Strategy 2: ask **most frequent** question

Strategy 3: ask **most helpful** question

do you use a **fixed strategy** in practice? 😊
Active Learning

Choice of Strategy

Strategy 1: uncertainty
ask most confused question

Strategy 2: representative
ask most frequent question

Strategy 3: exp.-err. reduction
ask most helpful question

• choosing one single strategy is non-trivial:

• human-designed strategy heuristic and confine machine’s ability

can we free the machine 😊 by letting it learn to choose the strategies?
Our Contributions

A philosophical and algorithmic study of active learning, which ...

- allows machine to make **intelligent choice of strategies**, just like my cute daughter
- studies **sound feedback scheme** to tell machine about goodness of choice, just like what I do
- results in **promising active learning performance**, just like (hopefully) bright future of my daughter 😊

will describe **key philosophical ideas** behind our proposed approach
Idea: Trial-and-Reward Like Human

by DFID - UK Department for International Development;
licensed under CC BY-SA 2.0 via Wikimedia Commons

K strategies:
A_1, A_2, \cdots, A_K

try one strategy

“goodness” of strategy as reward

two issues: try and reward
Online Choice of Strategy

Reduction to Bandit

when do humans trial-and-reward?

gambling 😊

- K strategies: $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_K$
 - try one strategy
 - "goodness" of strategy as reward

- K bandit machines: $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_K$
 - try one bandit machine
 - "luckiness" of machine as reward

—will take one well-known probabilistic bandit learner (EXP4.P)

intelligent choice of strategy \implies intelligent choice of bandit machine
Given: K existing active learning strategies

for $t = 1, 2, \ldots, T$

1. let EXP4.P decide strategy A_k to try
2. query the \tilde{x}_s suggested by A_k, and compute $g^{(t)}$
3. evaluate goodness of $g^{(t)}$ as reward of trial to update EXP4.P

only remaining problem: what reward?
ideal reward after updating classifier $g(t)$ by the query (x_{nt}, y_{nt}):

$$\text{accuracy } \frac{1}{M} \sum_{m=1}^{M} \left[y_m = g(t)(x_m) \right] \text{ on test set } \{(x_m, y_m)\}_{m=1}^{M}$$

- **test accuracy** as reward:
 area under query-accuracy curve \equiv cumulative reward

- **test accuracy infeasible** in practice
 —labeling **expensive**, remember? 😊

difficulty: approximate test accuracy on the fly
Design of Reward

Training Accuracy as Reward

test accuracy \[\frac{1}{M} \sum_{m=1}^{M} I[y_m = g(t(x_m))] \] infeasible, naïve replacement:

accuracy \[\frac{1}{t} \sum_{\tau=1}^{t} I[y_{n\tau} = g(t(x_{n\tau}))] \] on labeled pool \(\{(x_{n\tau}, y_{n\tau})\}_{\tau=1}^{t} \)

- **training accuracy** as reward: training accuracy \(\approx \) test accuracy?

- not necessarily!!
 —for active learning strategy that asks **easiest** questions:
 - training accuracy **high**: \(x_{n\tau} \) easy to label
 - test accuracy **low**: not enough information about **harder instances**

training accuracy: too **biased** to approximate test accuracy
Weighted Training Accuracy as Reward

- **Training accuracy**
 \[\frac{1}{t} \sum_{\tau=1}^{t} \left[y_{n_\tau} \cdot g^{(t)}(x_{n_\tau}) \right] \]
 biased, want **unbiased estimator**

- **non-uniform sampling** theorem: if \((x_{n_\tau}, y_{n_\tau})\) sampled with probability \(p_\tau > 0\) from data set \(\{(x_n, y_n)\}_{n=1}^{N}\) in iteration \(\tau\),

 \[
 \text{weighted training accuracy} \quad \frac{1}{t} \sum_{\tau=1}^{t} \frac{1}{p_\tau} \left[y_{n_\tau} = g(x_{n_\tau}) \right]
 \]

 \[\approx \frac{1}{N} \sum_{n=1}^{N} \left[y_n = g(x_n) \right] \text{ in expectation} \]

- with **probabilistic query** like EXP4.P:
 weighted training accuracy \(\approx\) test accuracy

weighted training accuracy: **unbiased** approx. of test accuracy on the fly
Design of Reward

Human-Designed Criterion as Reward

(Baram et al., 2004) COMB approach:

bandit + **balancedness** of $g^{(t)}$ on unlabeled data as reward

- why? human criterion that matches classifier to **domain assumption**
- but many active learning applications are on **unbalanced data**! —assumption may be **unrealistic**

existing strategies: active learning by acting;
COMB: active learning by acting;
ours: active learning by learning

Hsuan-Tien Lin (NTU CSIE)
Active Learning by Learning
Experiments

Comparison with Single Strategies

- **no single best strategy** for every data set
 —choosing/blending needed
- **ALBL** consistently **matches the best**
 —similar findings across other data sets

ALBL: effective in **making intelligent choices**
Experiments

Comparison with Other Adaptive Blending Algorithms

- **ALBL \approx COMB**
- **ALBL > COMB**

diabetes

sonar

- **ALBL > ALBL-Train** generally
 - *importance-weighted* mechanism needed for correcting biased training accuracy

- **ALBL** consistently comparable to or better than **COMB**
 - *learning performance* more useful than human-criterion

ALBL: effective in utilizing performance
Active Learning by Learning

- based on **bandit learning** + **unbiased performance estimator** as reward
- effective in **making intelligent choices** —comparable or superior to the best of existing strategies
- effective in **utilizing learning performance** —superior to human-criterion-based blending

New Directions

- **open-source tool** being developed
- extending to **more sophisticated active learning problems**

Thank you! Questions?