Active Learning by Bandit Learning

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

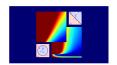
Appier/National Taiwan University (沛星互動科技/國立台灣大學資訊工程系)

Appier

National Center for Theoretical Sciences, March 22, 2018 joint works with Wei-Ning Hsu (AAAI 2015) and Hong-Min Chu (ICDM 2017)

About Me Hsuan-Tien Lin

- Chief Data Scientist, Appier
- Professor, Dept. of CSIE, National Taiwan University
- Co-author of textbook "Learning from Data: A Short Course"
- Instructor of the NTU-Coursera Mandarin-teaching ML Massive Open Online Courses
 - "Machine Learning Foundations": www.coursera.org/course/ntumlone
 - "Machine Learning Techniques": www.coursera.org/course/ntumltwo



Apple Recognition Problem

Note: Slide Taken from my "ML Techniques" MOOC

- need apple classifier: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!) and label them as apple/other for learning

(APAL stands for Apple and Pear Australia Ltd)

Dan Foy https:

nachans

https: //flic. kr/p/9XD7Aq

APAI

https:

//flic.

APAI https:

adrianbartel https: //flic. kr/p/bdv2hZ

Jo Jakeman

https: //flic. kr/p/7iwtGp

ANdrzej cH. https: //flic. kr/p/51DKA8

APAI

https: //flic. kr/p/izPYNr

Stuart Webster https: //flic. kr/p/9C3Ybd

APAI https: //flic. kr/p/izScif

Apple Recognition Problem

Note: Slide Taken from my "ML Techniques" MOOC

- need apple classifier: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!) and label them as apple/other for learning

Mr. Roboto.

https: //flic. kr/p/i5BN85

Richard North

https: //flic. kr/p/bHhPkB

Richard North

https: //flic. kr/p/d8tGou

Robert Fmilian Vicol

https: //flic. kr/p/bpmGXW

Nathaniel Mc-Queen

https: //flic. kr/p/pZv1Mf

Crystal https:

//flic. kr/p/kaPYp

ifh686

https: //flic. kr/p/6vjRFH

skyseeker https:

//flic. kr/p/2MvnV

Janet Hudson https:

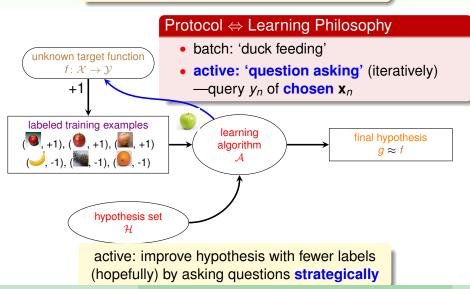
//flic. kr/p/70DBbm

Rennett Stowe

https: //flic. kr/p/agmnrk

Active Learning: Learning by 'Asking'

but labeling is expensive



Pool-Based Active Learning Problem

Given

- labeled pool $\mathcal{D}_l = \left\{ (\text{feature } \mathbf{x}_n), \text{label } y_n \text{ (e.g. lsApple?)} \right\}_{n=1}^N$
- unlabeled pool $\mathcal{D}_u = \left\{ \mathbf{\tilde{x}}_s \right\}_{s=1}^{S}$

Goal

design an algorithm that iteratively

- **1** strategically query some $\tilde{\mathbf{x}}_s$ to get associated \tilde{y}_s
- 2 move $(\tilde{\mathbf{x}}_s, \tilde{\mathbf{y}}_s)$ from \mathcal{D}_u to \mathcal{D}_l
- 3 learn classifier $g^{(t)}$ from \mathcal{D}_l

and improve test accuracy of $g^{(t)}$ w.r.t #queries

how to query strategically?

How to Query Strategically?

by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

Strategy 1

ask **most confused** question

Strategy 2

ask **most frequent** question

Strategy 3

ask most helpful question

do you use a fixed strategy in practice? ©

Choice of Strategy

Strategy 1: uncertainty

ask **most confused** question

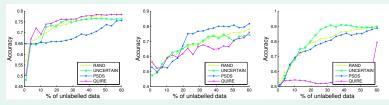
Strategy 2: representative

ask **most frequent** question

Strategy 3: exp.-err. reduction

ask **most helpful** question

choosing one single strategy is non-trivial:



human-designed strategy heuristic and confine machine's ability

can we **free** the machine \odot by letting it **learn to choose** the strategies?

Our Contributions

a philosophical and algorithmic study of active learning, which ...

- allows machine to make intelligent choice of strategies, just like my cute daughter & son
- studies sound feedback scheme to tell machine about goodness of choice, just like what I do
- results in promising active learning performance, just like (hopefully)
 bright future of my daughter & son

will describe **key philosophical ideas** behind our proposed approach

Idea: Trial-and-Reward Like Human

by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

two issues: try and reward

Reduction to Bandit

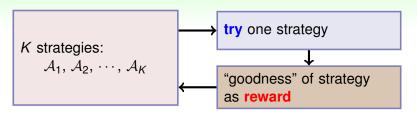
when do humans trial-and-reward? gambling 😳

—will take one well-known probabilistic bandit learner (EXP4.P)

intelligent choice of strategy

⇒ intelligent choice of bandit machine

Active Learning by Learning



Given: K existing active learning strategies

for t = 1, 2, ..., T

- 1 let EXP4.P decide strategy A_k to try
- 2 query the \tilde{x}_s suggested by A_k , and compute $g^{(t)}$
- 3 evaluate goodness of $g^{(t)}$ as reward of trial to update EXP4.P

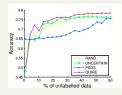
only remaining problem: what reward?

Ideal Reward

ideal reward after updating classifier $g^{(t)}$ by the query $(\mathbf{x}_{n_t}, y_{n_t})$:

accuracy
$$\frac{1}{M} \sum_{m=1}^{M} \left[y_m = g^{(t)}(\mathbf{x}_m) \right]$$
 on test set $\{(\mathbf{x}_m, y_m)\}_{m=1}^{M}$

 test accuracy as reward: area under query-accuracy curve = cumulative reward



test accuracy infeasible in practice
 —labeling expensive, remember? ②

difficulty: approximate test accuracy on the fly

Training Accuracy as Reward

test accuracy $\frac{1}{M}\sum_{m=1}^{M} \frac{g^{(t)}(\mathbf{x}_m)}{g^{(t)}(\mathbf{x}_m)}$ infeasible, naïve replacement:

accuracy
$$\frac{1}{t}\sum_{\tau=1}^t \left[\!\!\left[y_{n_\tau} = g^{(t)}(\mathbf{x}_{n_\tau})\right]\!\!\right]$$
 on labeled pool $\{(\mathbf{x}_{n_\tau}, y_{n_\tau})\}_{\tau=1}^t$

- training accuracy as reward: training accuracy ≈ test accuracy?
- not necessarily!!
 - —for active learning strategy that asks **easiest** questions:
 - training accuracy **high**: $\mathbf{x}_{n_{\tau}}$ easy to label
 - test accuracy low: not enough information about harder instances

training accuracy:

too **biased** to approximate test accuracy

Weighted Training Accuracy as Reward

training accuracy
$$\frac{1}{t}\sum_{\tau=1}^{t} \sqrt{n_{\tau}} g^{(t)}(\mathbf{x}_{n_{\tau}})$$
 biased, want less-biased estimator

• non-uniform sampling theorem: if $(\mathbf{x}_{n_{\tau}}, \mathbf{y}_{n_{\tau}})$ sampled with probability $p_{\tau} > 0$ from data set $\{(\mathbf{x}_{n}, \mathbf{y}_{n})\}_{n=1}^{N}$ in iteration τ ,

weighted training accuracy
$$\frac{1}{t} \sum_{\tau=1}^{t} \frac{1}{p_{\tau}} \llbracket y_{n_{\tau}} = g(\mathbf{x}_{n_{\tau}}) \rrbracket$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} [y_n = g(\mathbf{x}_n)]$$
 in expectation

with probabilistic query like EXP4.P:
 weighted training accuracy ≈ test accuracy

weighted training accuracy:

less biased approx. of test accuracy on the fly

Human-Designed Criterion as Reward

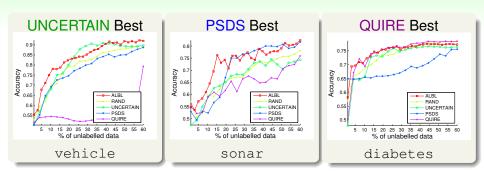
(Baram et al., 2004) COMB approach:

bandit + **balancedness** of $g^{(t)}$ on unlabeled data as reward

- why? human criterion that matches classifier to domain assumption
- but many active learning applications are on unbalanced data!
 —assumption may be unrealistic

existing strategies: active learning by acting; COMB: active learning by acting; ours: active learning by learning

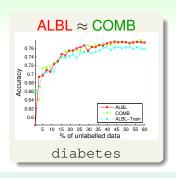
Comparison with Single Strategies

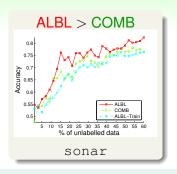


- no single best strategy for every data set —choosing needed
- ALBL consistently matches the best
 - -similar findings across other data sets

ALBL: effective in making intelligent choices

Comparison with Other Adaptive Blending Algorithms





- ALBL > ALBL-Train generally
 —importance-weighted mechanism needed for correcting biased training accuracy
- ALBL consistently comparable to or better than COMB
 —learning performance more useful than human-criterion

ALBL: effective in utilizing performance

Mini Summary

Active Learning by Learning

- based on bandit learning + less biased performance estimator as reward
- effective in making intelligent choices
 - —comparable or superior to the best of existing strategies
- effective in utilizing learning performance
 - -superior to human-criterion-based blending

New Directions

- open-source tool developed (https://github.com/ntucllab/libact)
- extending to more sophisticated active learning problems

Wait! Discussion and another interesting work!

Discussion for Statisticians

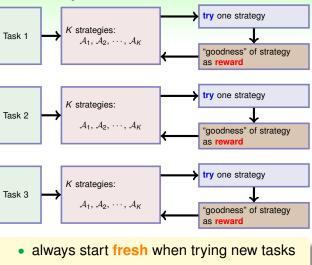
weighted training accuracy $\frac{1}{t}\sum_{\tau=1}^t \frac{1}{\rho_{\tau}} \left[y_{n_{\tau}} = g^{(t)}(\mathbf{x}_{n_{\tau}}) \right]$ as reward

- is reward unbiased estimator of test performance?
 no for learned g^(t) (yes for fixed g)
- is reward fixed before playing? no because $g^{(t)}$ learned from $(\mathbf{x}_{n_t}, y_{n_t})$
- is reward independent of each other?
 no because past history all in reward

ALBL: tools from statistics

+ wild/unintended usage

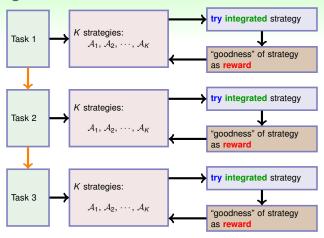
Beyond Trial and Reward



always try one strategy

—do you do so as a human? 🙂

Integrate-Reward-and-Transfer Like Human



more human-like:

- try integrated strategy
- transfer trial experience to other tasks

Cross-Data-Set Active Learning Problem

Given

• unlabeled $\mathcal{D}_u^{(1)}$ and labeled pool

• unlabeled $\mathcal{D}_u^{(2)}$ and labeled pool

$$\mathcal{D}_{l}^{(2)} = \left\{ \text{(feature } \mathbf{x}_{m}' \quad \P, \text{label } y_{m}' \text{ (e.g. IsOrange?))} \right\}_{m=1}^{M}$$

• unlabeled $\mathcal{D}_u^{(3)}$ and labeled pool

$$\mathcal{D}_{l}^{(3)} = \left\{ (\text{feature } \mathbf{x}_{p}^{"}, \text{label } y_{p}^{"} \text{ (e.g. lsVerb?)}) \right\}_{p=1}^{P}, \dots$$

Goal

exploit active learning experience from $\{(\mathcal{D}_{l}^{(v)}, \mathcal{D}_{u}^{(v)}))\}_{v=1}^{V-1}$ to improve the active learning performance on $(\mathcal{D}_{l}^{(V)}, \mathcal{D}_{u}^{(V)})$

how to define experience?

Experience and Integration



- philosophical idea: experience = how to integrate
- EXP4.P in ALBL as probabilistic integration: randomly chosen strategy w.r.t. strategy choice probability

naïve experience transfer in ALBL: initialize choice probability from prior tasks

Deterministic Instead of Probabilistic Integration

Active Learning

K strategies, N_u unlabeled instances, maximize test performance

ALBL

- action: one of K
- bandit solver: EXP4.P
- reward: weighted accuracy w.r.t. prob.

Linear Strategy Aggregation (LSA)

- action: one of N_u
- bandit solver: LinUCB (UCB with ridge regression on contexts)
- goal: weighted accuracy w.r.t.
 UCB
- context z_{ℓ,t} for bandit solver
 ⇔ strategy scores on each instance
- weights w_t from bandit solver
 ⇔ experience

next: Transfer LSA

Transfer LSA with Biased Regularization

Transfer LSA with Biased Regularization

• LSA on $(\mathcal{D}_{\ell}^{(1)}, \mathcal{D}_{u}^{(1)})$ —with zero experience

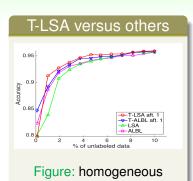
$$\mathbf{w}_t = \underset{\mathbf{w}}{\operatorname{argmin}} \lambda \|\mathbf{w} - \mathbf{0}\|^2 + \|\mathbf{Z}_t \mathbf{w} - \mathbf{r}_t\|^2$$

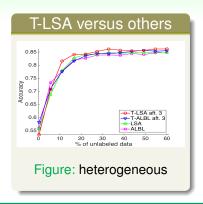
• T-LSA on $(\mathcal{D}_{\ell}^{(V)}, \mathcal{D}_{u}^{(V)})$ —with **previous experience**

$$\mathbf{w}_t = \underset{\mathbf{w}}{\operatorname{argmin}} \lambda \|\mathbf{w} - \underset{\mathbf{w}}{\mathbf{w}^{(V-1)}}\|^2 + \|\mathbf{Z}_t \mathbf{w} - \mathbf{r}_t\|^2$$

intuition: enforce \mathbf{w} to be close to $\mathbf{w}^{(V-1)}$

Experiments





Results

- T-LSA > LSA: transferring beneficial
- T-LSA > T-ALBL: deterministic transferring better

Final Summary

Active Learning by (Bandit) Learning

- based on bandit learning + less biased performance estimator as reward
- effective in making intelligent choices
 - —comparable or superior to the best of existing strategies
- effective in utilizing learning performance
 - -superior to human-criterion-based blending

Transfer Active Learning by (Bandit) Learning

- based on linear-UCB bandit learning + biased regularization for experience transfer
- effective in passing active learning experience
 - -better than cold-start

Thank you! Questions?