Making Active Learning More Realistic

Hsuan-Tien Lin

National Taiwan University

htlin@csie.ntu.edu.tw

Keynote Talk of Weakly-supervised Learning Workshop @ ACML November 17 2019

About Me

Active Learning

Apple Recognition Problem

Note: Slide Taken from my "ML Techniques" MOOC

- need apple classifier: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!) and label them as apple/other for learning

(APAL stands for Apple and Pear Australia Ltd)

Dan Foy https: //flic. kr/p/jNQ55

APAL https: //flic. kr/p/jzP1VB

nachans https: //flic. kr/p/9XD7Ag

APAL https: //flic. kr/p/jzRe4u

adrianbartel

https: //flic. kr/p/bdy2hZ

Jo Jakeman https: //flic. kr/p/7jwtGp

ANdrzej cH. https: //flic. kr/p/51DKA8

APAL https: //flic. kr/p/jzPYNr

Stuart Webster https: //flic. kr/p/9C3Ybd

APAL https: //flic. kr/p/jzScif

Hsuan-Tien Lin (NTU)

Apple Recognition Problem

Note: Slide Taken from my "ML Techniques" MOOC

- need apple classifier: is this a picture of an apple?
- gather photos under CC-BY-2.0 license on Flicker (thanks to the authors below!) and label them as apple/other for learning

Richard North

https: //flic. kr/p/i5BN85

Mr. Roboto.

Crystal https: //flic. kr/p/kaPYp

https: //flic. kr/p/bHhPkB

ifh686 https: //flic. kr/p/6viRFH

Richard North

https: //flic. kr/p/d8tGou

skyseeker https: //flic. kr/p/2MvnV

Emilian Robert Vicol https: //flic. kr/p/bpmGXW

Janet Hudson https: //flic. kr/p/70DBbm

Nathaniel Mc-Queen https: //flic.

Rennett Stowe https: //flic. kr/p/agmnrk

Hsuan-Tien Lin (NTU)

Active Learning: Learning by 'Asking'

active: improve hypothesis with fewer labels (hopefully) by asking questions **strategically** —learning with **incomplete** labels

Hsuan-Tien Lin (NTU)

Active Learning

Pool-Based Active Learning Problem

Given

• labeled pool $\mathcal{D}_l = \left\{ (\text{feature } \mathbf{x}_n \bigcirc \text{label } y_n \text{ (e.g. IsApple?)} \right\}_{n=1}^N$

• unlabeled pool
$$\mathcal{D}_u = \left\{ \tilde{oldsymbol{x}}_{oldsymbol{s}}
ight\}_{oldsymbol{s}=}^S$$

Goal

design an algorithm that iteratively

- **1** strategically query some $\tilde{\mathbf{x}}_s = \mathbf{v}_s$ to get associated \tilde{y}_s
- 2 move $(\tilde{\mathbf{x}}_s, \tilde{\mathbf{y}}_s)$ from \mathcal{D}_u to \mathcal{D}_l
- **3** learn classifier $g^{(t)}$ from \mathcal{D}_l (optionally, $+\mathcal{D}_u$)

and improve test accuracy of $g^{(t)}$ w.r.t #queries

how to query strategically?

Hsuan-Tien Lin (NTU)

Uncertainty Sampling

How to Query Strategically? (1/2)

by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

how to define confusion (uncertainty)? 🙂

Hsuan-Tien Lin (NTU)

Uncertainty Sampling

Uncertainty of Hard Binary Classifier

uncertain \Leftrightarrow near binary decision boundary

Query x̃s (magenta circle) closest to the hyperplane

figure from my former student Chun-Liang Li's ACML 2012 presentation (Li, 2012)

uncertainty sampling: arguably **most popular** AL paradigm because **simple** and **effective**

Hsuan-Tien Lin (NTU)

Problem of Uncertainty Sampling

figures from my student Chun-Liang Li's ACML 2012 presentation (Li, 2012)

- overly confident about unknown clusters
- trapped in bad "local optimal"

solution: query unknown clusters

Representative Sampling

How to Query Strategically? (2/2)

by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

how to combine frequency (density) with uncertainty? 😳

Hsuan-Tien Lin (NTU)

Representative Sampling

Representative Sampling (1/2): Query of Informative and Repre. Examples (QUIRE)

QUIRE (Huang, 2010)

$$\tilde{\mathbf{x}}_{s} = \underset{\tilde{\mathbf{x}}}{\operatorname{argmin}} \left(\operatorname{worst case loss on} \left(\mathcal{D}_{l} \cup \mathcal{D}_{u} \right) \mid (\tilde{\mathbf{x}}, \tilde{y}) \right)$$

where loss \approx -accuracy

- \approx uncertainty: knowing \tilde{y} improves loss a lot in worst case
- \approx representative: knowing \tilde{y} improves loss a lot for \mathcal{D}_u part

QUIRE: promising for RS, but **time consuming** to compute

Representative Sampling

Representative Sampling (2/2): Hinted Sampling

Uncertainty Sampling (US)Hinted Sampling $\tilde{\mathbf{x}}_s = \operatorname{argmax}(1 - |p(\tilde{\mathbf{x}})|)$ $\tilde{\mathbf{x}}_s = \operatorname{argmax}(1 - |p'(\tilde{\mathbf{x}})|)$ where $p(\tilde{\mathbf{x}})$ is probability of
more likely classwhere $p'(\tilde{\mathbf{x}}) \approx \frac{1}{2}$ for dense
regions of \mathcal{D}_u afterwardsinitially $\tilde{\mathbf{x}}'$ $\tilde{\mathbf{x}}'$

figures from my student Chun-Liang Li's ACML 2012 presentation (Li, 2012)

Hinted Sampling: **simple realization** of RS

Hsuan-Tien Lin (NTU)

How to Query Strategically?

by DFID - UK Department for International Development; licensed under CC BY-SA 2.0 via Wikimedia Commons

Strategy 1	Strategy 2	Strategy 3
uncertainty sampling	QUIRE	hinted sampling

do you use a **fixed strategy** in practice? 😳

Hsuan-Tien Lin (NTU)

Choice of Strategy

Strategy 1	Strategy 2	Strategy 3
uncertainty sampling	QUIRE	hinted sampling
		F 3D3 (Donmez, 2008)

human-designed strategy heuristic and confine machine's ability

choice (in advance): practitioner's pain point —proposed solution: learning to choose

Hsuan-Tien Lin (NTU)

Choice of Strategy

Idea: Trial-and-Reward Like Human

by DFID - UK Department for International Development;

licensed under CC BY-SA 2.0 via Wikimedia Commons

two issues: try and reward

Hsuan-Tien Lin (NTU)

Reduction to Bandit

when do humans trial-and-reward? gambling 😳

intelligent choice of strategy \implies intelligent choice of **bandit machine**

Hsuan-Tien Lin (NTU)

Active Learning by Learning (Hsu, 2015)

Given: *K* existing active learning strategies

for t = 1, 2, ..., T

- 1 let EXP4.P decide strategy A_k to try
- **2** query the \tilde{x}_s suggested by \mathcal{A}_k , and compute $g^{(t)}$
- ${f S}$ evaluate **goodness of** $g^{(t)}$ as **reward** of **trial** to update EXP4.P

only remaining problem: what reward?

Hsuan-Tien Lin (NTU)

Ideal Reward

ideal reward after updating classifier $g^{(t)}$ by the query $(\mathbf{x}_{n_t}, y_{n_t})$:

accuracy
$$\frac{1}{M} \sum_{m=1}^{M} \left[y_m = g^{(t)}(\mathbf{x}_m) \right]$$
 on test set $\{(\mathbf{x}_m, y_m)\}_{m=1}^{M}$

 test accuracy as reward: area under query-accuracy curve = cumulative reward

 test accuracy infeasible in practice —labeling expensive, remember?

difficulty: approximate test accuracy on the fly

Hsuan-Tien Lin (NTU)

Design of Reward

Weighted Training Accuracy as Reward

• **non-uniform sampling** theorem: if $(\mathbf{x}_{n_{\tau}}, \mathbf{y}_{n_{\tau}})$ sampled with probability $p_{\tau} > 0$ from data set $\{(\mathbf{x}_n, y_n)\}_{n=1}^N$,

weighted training accuracy
$$\frac{1}{t} \sum_{\tau=1}^{t} \frac{1}{p_{\tau}} [\![y_{n_{\tau}} = g(\mathbf{x}_{n_{\tau}})]\!]$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} [[y_n = g(\mathbf{x}_n)]]$$
 in expectation

 with probabilistic query like EXP4.P: weighted training accuracy ≈ test accuracy —can approximate test accuracy on the fly

ALBL: EXP4.P + weighted training accuracy

Comparison with Single Strategies

- no single best strategy for every data set —choosing needed
- ALBL consistently matches the best —similar findings across other data sets

ALBL: effective in making intelligent choices

Hsuan-Tien Lin (NTU)

Realistic Active Learning

Have We Made Active Learning More Realistic? (1/2)

📮 ntucllab / libact				• Watch	59	\star Star	533	¥ Fork	144
<> Code (1) Issues	36 Dull requests 3	Projects 0 🕕 Sec	curity 🔟 Insights						
Pool-based active lear machine-learning-library	rning in Python http://liba active-learning	act.readthedocs.org/							
700 commits & 6 branches D packages \$\$9 releases				13 contributors			ৰ্কু BSD-2-Clause		
() 100 commus	P o branches	D packages	S 9 releases	AL 13 (contribu	itors	a]ta B∶	SD-2-Clau	se
	p o branches	D v packages	V 9 releases	AL 13 (contribu	itors	ब्री≊ B:	SD-2-Clau	se
Yes!	y o branches	D packages	V 9 releases	Ag 13 (contribu	itors	ф В	SD-2-Clau	se

received > 500 stars and continuous issues

"libact is a Python package designed to make active learning easier for real-world users"

Hsuan-Tien Lin (NTU)

Have We Made Active Learning More Realistic? (2/2)

No!

- single-most raised issue: hard to install on Windows/Mac —because hinted (& others) requires some C packages
- performance in a recent industry project:

- uncertainty sampling often suffices
- ALBL dragged down by bad strategy (DWUS: representative sampling)

"libact is a Python package designed to make active learning easier for real-world users"

Hsuan-Tien Lin (NTU)

Realistic Active Learning

Other Attempts for Realistic Active Learning

"learn" a strategy **beforehand** rather than on-the-fly?

- learning active learning (Konyushkova, 2017)
- transfer active learning experience (Chu, 2016)

-not easy to realize in open-source package

strategy to save true resource consumption (cost)?

• annotation cost-sensitive learning (Tsou, 2019)

-costly to get costs 😳

many more needs to be satisfied: mini-batch, multi-label query, **weak-label query**, etc.

Summary

Traditional Active Learning

 strategies by human philosophy: uncertainty, representative (QUIRE, hinted), and many more

Active Learning by (Bandit) Learning

- based on bandit learning + performance estimator as reward
- effective in making intelligent choices

 —comparable or superior to the best of existing strategies

Making Active Learning Realistic

- attempt with open-source tool libact
- still very challenging

Thank you! Questions?

Hsuan-Tien Lin (NTU)