Combining Ordinal Preferences by Boosting

Hsuan-Tien Lin and Ling Li

National Taiwan University/California Institute of Technology

Preference Learning Workshop, September 12, 2009

Hot or Not?

rank: representing human preferences by a finite ordered set of labels $\mathcal{Y} = \{1, 2, \dots, K\}$

How Much Did You Like These Movies?

http://www.netflix.com

goal: use "movies you've rated" to automatically predict your **preferences (ranks)** on future movies

Properties of Ordinal Ranking

- ranks represent order information
 general classification cannot property use such
 - rating 9 "hotter than" rating 8 "hotter than" rating 7

```
Select a rating to see the next picture.

NOT 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 HOT
```

- ranks do **not** carry numerical information
 —general regression deteriorates without such
 - *** not 2.5 times better than ***

Ordinal Ranking Setup

Given

N examples (input x_n , rank y_n) $\in \mathcal{X} \times \mathcal{Y}$

- hotornot: $\mathcal{X} =$ encoding(human pictures), $\mathcal{Y} = \{1, \dots, 10\}$
- netflix: $\mathcal{X} = \text{encoding(movies/users)}, \, \mathcal{Y} = \{1, \dots, 5\}$

Goal

an ordinal ranker r(x) that "closely predicts" the ranks y associated with some **unseen** inputs x

no numerical information: how to say "close"?

Formalizing (Non-)Closeness: Cost

- artificially quantify the cost of being wrong
 - e.g. loss of customer loyalty when the recommendation system says ★★★★★ but you feel ★★☆☆☆
- cost vector **c** of example (x, y, \mathbf{c}) :
 - $\mathbf{c}[k] = \text{cost when predicting } (x, y) \text{ as rank } k$
 - e.g. for (Sweet Home Alabama, $\bigstar \bigstar \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow \Rightarrow \Rightarrow \Rightarrow$), a customer-oriented cost may be $\mathbf{c} = (1, 0, 2, 10, 15)$
- or use general cost vectors:

c[
$$k$$
] = [$y \neq k$] c[k] = | $y - k$ |
classification absolute
(1,0,1,1,1) (1,0,1,2,3)

closely predict: small cost during testing

Combining Ordinal Rankers

- some simple ordinal rankers that predict your preference on movies:
 - $r_1(x) =$ a ranker based on actor performance
 - $r_2(x) =$ a ranker based on actress performance
 - $r_3(x) =$ a ranker based on an expert opinion
 - $r_4(x) =$ a ranker based on box reports
- no single ranker can explain your preference well, but an ensemble combination of them possibly can

how to construct a good ordinal ensemble?

Our Contributions

an algorithmic and theoretical development on ensemble learning for ordinal ranking, which ...

- extends AdaBoost to ordinal ranking: can construct ordinal ensemble from any (possibly application-specific) cost
- introduces new theoretical guarantee on the performance of ordinal ensemble
- leads to good experimental results

algorithm	base ranker	final ranker
RankBoost (Freund et al., JMLR '03)	real (pairwise)	real (pairwise)
ORBoost (Lin and Li, ALT '06)	real (binary)	ordinal
AdaBoost.OR	ordinal	ordinal

From Ordinal Ranking to Binary Classification (and Back)

original problem

What is the rank of the movie x? (r(x) = ?)

reduced problems (Li and Lin, NIPS '06)

Is the rank of movie x greater than k? (r(x) > k?)

- traditional: combine probabilistic outputs (Frank and Hall, ECML '01)
- ours: use counting of deterministic binary outputs
- simple and efficient
- good theoretical guarantee:
 - absolutely good binary classifier ⇒ absolutely good ranker (Li and Lin, NIPS '06)
 - ② relatively good binary classifier ⇒ relatively good ranker (proved in this paper)

Ordinal Ensemble: Prediction (1/2)

Goal

rankers $r_1(x) = 1$, $r_2(x) = 6$, $r_3(x) = 5$; what does ensemble $R = \{r_1, r_2, r_3\}$ say on x?

Possible Solutions

- majority? R(x) = 1 or 5 or 6
- mean? R(x) = 4
- median? R(x) = 5
- ...?

Ordinal Ensemble: Prediction (2/2)

Goal

```
rankers r_1(x) = 1, r_2(x) = 6, r_3(x) = 5; what does ensemble R = \{r_1, r_2, r_3\} say on x?
```

Known

binary classifiers $g_1(x) = Y$, $g_2(x) = N$, $g_3(x) = Y$; what does ensemble $G = \{g_1, g_2, g_3\}$ say on x?

—majority vote G(x) = Y

R(x) = 5 (**provably**, the median) —can be applied to **any** ordinal ensemble

Ordinal Ensemble: Training (1/4)

Goal

locate ordinal rankers $r_1(x)$, $r_2(x)$, \cdots , $r_T(x)$ as well as their importance v_1 , v_2 , \cdots , v_T

Known: AdaBoost

locate binary classifiers $g_1(x)$, $g_2(x)$, ..., $g_T(x)$ as well as their importance v_1 , v_2 , ..., v_T with weighted binary examples $(x_n, z_n, w_n^{(t)})$

- binary classifier

 ordinal ranker?
- weighted binary examples \(\Lorsymbol{c} \) cost-sensitive ordinal examples?

tools: reduction and reverse reduction

Ordinal Ensemble: Training (2/4)

- 1 transform ordinal examples (x_n, y_n, \mathbf{c}_n) to weighted binary ones (x_{nk}, z_{nk}, w_{nk})
- use your favorite algorithm on the weighted binary examples to get a binary classifier g
- for each new input x, predict its rank using $r_{q}(x) = 1 + \sum_{k} [g(x, k) = Y]$

Ordinal Ensemble: Training (3/4)

reduction:

apply transforms on ordinal examples and binary classifiers

reverse reduction:

apply inverse transforms on binary examples and ordinal rankers

Ordinal Ensemble: Training (4/4)

AdaBoost.OR Derivation in a Nut Shell

- plug AdaBoost into reduction
- decompose AdaBoost as a series of binary base learners
- 3 cast ordinal base learner as binary one with reverse reduction

AdaBoost.OR: Further Simplifications

Reduction + Reverse Reduction

examples
$$(x_n, y_n, \mathbf{c}_n)$$

(reduction) $\Longrightarrow (x_{nk}, z_{nk}, w_{nk})$
(AdaBoost) $\Longrightarrow (x_{nk}, z_{nk}, w_{nk}^{(t)})$
(rev. red.) $\Longrightarrow (x_n, y_n, \mathbf{c}_n^{(t)})$

AdaBoost.OR

examples (x_n, y_n, \mathbf{c}_n) (AdaBoost.OR) $\Longrightarrow (x_n, y_n, \mathbf{c}_n^{(t)})$ (maintain $\mathbf{c}_n^{(t)}$ directly)

Reduction + Reverse Reduction

ensemble
$$\{(v_t, r_t)\}$$

(rev. red.) $\implies \{(v_t, g_t)\}$
(AdaBoost) $\implies G(x, k)$
(reduction) $\implies R_G(x)$

AdaBoost.OR

ensemble $\{(v_t, r_t)\}$ (AdaBoost.OR) \implies R(x)

(compute weighted median)

AdaBoost.OR versus AdaBoost

AdaBoost.OR

for $t = 1, 2, \dots, T$,

- find a simple r_t that matches best with the current "view" of $\{(x_n, y_n)\}$
- 2 give a larger weight v_t to r_t if the match is stronger
- o update "view" by emphasizing the costs \mathbf{c}_n of those (x_n, y_n) that r_t doesn't predict well prediction:

weighted median of $\{(v_t, r_t(x))\}$

AdaBoost

for $t = 1, 2, \dots, T$,

- find a simple g_t that matches best with the current "view" of $\{(x_n, y_n)\}$
- 2 give a larger weight v_t to g_t if the match is stronger
- o update "view" by emphasizing the weights of those (x_n, y_n) that g_t doesn't predict well prediction:

majority vote of $\{(v_t, g_t(x))\}$

AdaBoost.OR

= reduction + any cost + AdaBoost + derivations

Boosting Property of AdaBoost.OR

Ordinal Ranking

For AdaBoost.OR, if rankers r_t always achieve normalized training $\cos t \leq \frac{1}{2} - \gamma$,

training cost of ensemble

 \leq constant $\cdot \exp(-2\gamma^2 T)$

Bin. Class. (Freund and Schapire, 1997)

For AdaBoost, if classifiers g_t always achieve weighted training error $\leq \frac{1}{2} - \gamma$,

training error of ensemble

 \leq constant $\cdot \exp(-2\gamma^2 T)$

 many other useful properties inherited: algorithmic structure; boosting property; generalization bounds

any future improvements in AdaBoost parallel improvements in AdaBoost.OR

ORStump v.s. AdaBoost.OR + ORStump

- ORStump: a simple algorithm for ordinal ranking
- AdaBoost.OR: a good ensemble learning algorithm for ordinal ranking

- boosts ORStump in both training and testing
- efficient and sometimes outperforms benchmark

Conclusion

- reduction + reverse reduction:
 - proved: relatively good binary classifier ⇒ relatively good ranker
 - derived AdaBoost.OR
 - —training: update costs instead of weights
 - —prediction: weighted median (wider application)
- proved boosting and generalization properties of AdaBoost.OR
- obtained good experimental results

more general reduction results:

(H.-T. Lin & L. Li, Reduction from Ordinal Ranking to Binary Classification, 2009)

Thank you. Questions?

