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Abstract

This paper describes our proposed solution for the Yahoo! Learning to Rank challenge.
The solution consists of an ensemble of three point-wise, two pair-wise and one list-wise
approaches. In our experiments, the point-wise approaches are observed to outperform pair-
wise and list-wise ones in general, and the final ensemble is capable of further improving
the performance over any single approach. In terms of the online validation performance,
our proposed solution achieves an ERR of 0.4565 (NDCG 0.7870) for set 1.

Keywords: ranking, ensemble learning

1. Introduction

We explore six approaches to learn from set 1 of the Yahoo! Learning to Rank challenge.
To train with the huge set effectively and efficiently, we adopt three point-wise ranking
approaches: ORSVM, Poly-ORSVM, and ORBoost; to capture the essence of the ranking
problem, we take two pair-wise ranking approaches: Linear RankSVM and Rank Logistic
Regression; to take the evaluation criteria of the competition into account, we include one
list-wise ranking approach: BoltzRank. We systematically study several settings of each
approach and compare their strength and weakness. After the studies, we combine some
selected settings of each approach and form an ensemble for the final submission. Next,
we will first describe our studies on the six approaches and the corresponding results in
Sections 2 to 7. Then, we report our final ensemble in Section 8 and summarize in Section 9.

Below we describe the notations that will be used throughout this paper: x represents an
instance vector in R?; y represents its given rank (label) in the range of {0,1,..., K — 1}.
The total number of queries is @), and the given data set of the competition is of the



form U?Zl{(q,an,yqn)}gil, where N, is the number of examples (q, Xgn, Yqn) in query q.

In the training part of set 1 in the competition, d = 519, K =5, Q = 19944 and 25:1 N, =
473134. We will generally use N to denote the number of training examples that are given
to a learning algorithm, and T to denote the number of iterations that an iterative learning
algorithm uses for training.

2. Ordinal Ranking SVM

Ordinal Ranking SVM (ORSVM; Li and Lin, 2007) is an approach for solving ordinal rank-
ing (regression). The approach reduces ordinal ranking to SVM-based binary classification
by thresholding an underlying raw score for each instance. We apply the approach in this
competition as follows. First, we combine all examples from all queries ¢ to a big training
set with ordinal ranking examples {(X4n, Yqn)}. Then, we transform each example to K —1
binary classification examples of the form

K-1

{((an,ek), 2k < yon] - 1>}k71 ’
where ey, is a vector that contains a single 1 at the k-th component and 0 otherwise. The
transformed examples are then fed to an SVM solver using a composite kernel defined by
the summation of a nonlinear kernel for the x4, part and a linear kernel for the e; part.
We use the learned decision function from the solver to predict a relevance score for any
test instance x by plugging (x,0,0,...,0) into the function. Finally, we order the instances
in the test queries by their predicted relevance scores to form the ranked list.

From the reduction view of the approach, the time complexity of ORSVM is similar
to that of a usual binary SVM on N (K — 1) examples, with a space complexity of O(N?)
for storing the nonlinear kernel part. Following the analysis of the LIBSVM solver that
we adopt (Chang and Lin, 2001), the time complexity of our ORSVM implementation! is
O(T'NKd) when considering a nonlinear kernel on x4, that can be evaluated within O(d)
and caching most of the kernel evaluations.

An important feature of ORSVM is that we can assign a cost vector per example to
indicate the penalties for different kinds of erroneous predictions (Li and Lin, 2007). This
setting enables us to encode the relative importance of each instance and each prediction.
To match the evaluation criteria of the competition, we adopt an ERR~oriented cost setting.
In particular, the k-th component of the cost vector for an instance x4, is defined as the
difference to the optimal ERR. That is,

the k-th cost component for instance Xgy,

= (optimal ERR of query q) — (ERR when (q,Xgn, Yqn) is mis-predicted as rank k).

2.1 Experiments

We adopt the perceptron kernel (Lin and Li, 2008) as the nonlinear kernel for x in ORSVM
because the kernel allows for faster parameter selection. Since the given data set is large,
we select the C' parameter in ORSVM with 100 smaller data sets, each of which consists of

1. downloadable from http://www.work.caltech.edu/~htlin/program/libsvm/



Table 1: ORSVM without ERR-oriented Cost

chunk size 400 40000 | 100000
training time (min) | ~ 100 | =~ 500 | ~ 4000
online ERR 0.4447 | 0.4500 | 0.4519

Table 2: ORSVM with ERR-oriented Cost

chunk size 40000 | 100000
training time (min) | ~ 1000 | & 6000
online ERR 0.4517 | 0.4527

4000 examples. The best parameter is then decided by a majority vote from cross-validation
on the small data sets.

The training set that we use for ORSVM (before doing ensemble learning in Section 8)
consists about 400000 examples, which is time-consuming to train with a single-CPU ma-
chine. To decrease the training time, we try dividing the set into smaller chunks, and average
the decision functions learned from those chunks as the final decision function. In Table 1,
we report the results of general ORSVM with respect to different chunk sizes. We can see
that when the chunk size increases, ORSVM can achieve better results. Nevertheless, the
corresponding training time also increases rapidly.

Table 2 shows the results of ORSVM with ERR-oriented cost on different chunk sizes.
Comparing Table 2 with Table 1, we see that the results with ERR-oriented cost are better
than those without the cost, which means that the proposed ERR-oriented cost can improve
ranking quality effectively.

3. Polynomial ORSVM

Polynomial ORSVM (Poly-ORSVM; Lin, 2008) shares the same root with ORSVM, except
that the solver adopted is LIBLINEAR (Fan et al., 2008) instead of LIBSVM. The main
reason for considering Poly-ORSVM with the LIBLINEAR solver is to decrease the training
time needed. In particular, the dual coordinate descent implementation in LIBLINEAR is
of time complexity O(T'd) for training a binary SVM or ORSVM. That is, there is no
dependence on N and K within each iteration.?

As reported by Chang et al. (2010), a low-dimensional polynomial feature mapping
can improve the performance of linear SVM. We adopt a similar idea in Poly-ORSVM.
In particular, we append the products of original features as new feature terms, which
provide nonlinear information during training. The simplest idea is to use products of two
original feature components, which would be called degree-2 expansions. Nevertheless, for
the original d features, using all degree-2 expansions is computational infeasible. Thus, we
study two ideas: randomly keeping only d terms from the degree-2 terms, or keeping only
the non-cross terms.

2. The trade-off is that LIBLINEAR may use more iterations. But in general LIBLINEAR can still benefit
from its faster training per iteration.



Table 3: Poly-ORSVM with Different Terms

random terms

random terms

non-cross terms

C parameter

0.1

1

0.01

internal validation ERR

0.4467

0.4485

0.4486

Table 4: Poly-ORSVM with Different Degrees of Expansions

degree-1 (linear) | degree-2 | degree-3 | degree-4
best C selected from internal validation 0.1 0.01 0.001 0.001
training time (min) ~ 19 ~ 8 ~ 6 ~ 13
online ERR 0.4413 0.4432 0.4451 0.4456
online NDCG 0.7566 0.7587 | 0.7625 | 0.7643

Table 3 reports the results on our internal validation data set, which is a random 20%
of the original training set. We keep the same number of random terms to the non-cross
terms in the experiments. From Table 3, when the numbers of appended terms are the
same, Poly-ORSVM with non-cross terms is better than or similar to Poly-ORSVM with
random terms. Thus, expanding only the non-cross terms, namely, the nt" powers of each
features, is a promising way for Poly-ORSVM.

To improve the degree-2 Poly-ORSVM, we also append the 3™, and 4" powers as new
feature terms. The results are listed in Table 4 and demonstrate that Poly-ORSVM can
efficiently achieve promising results with those new feature terms. In particular, using the
3'4 and 4" powers of each feature shows better results compared with the ones with only
linear or the 2™ power of feature. Although the ranking performance of Poly-ORSVM is
not as good as that of ORSVM (online ERR 0.4527), the time cost is reduced dramatically.

4. Ordinal Regression Boosting

Ordinal Regression Boosting (ORBoost; Lin and Li, 2006) is a boosting-like approach for
ordinal regression with large-margin thresholded ensembles. The is similar to ORSVM, but
adjusts the underlying scores and thresholds adaptively with the help of a base learner. In
our experiments, we study two variants of ORBoost: ORBoost with all margins (ORBoost-
All) and ORBoost with left-right margins (ORBoost-LR). ORBoost-All attempts to mini-
mize the absolute cost between the predicted and actual ordinal ranks, whereas ORBoost-LR
attempts to minimize the classification cost.

As done by (Lin and Li, 2006), we take the decision stumps and perceptrons as base
learners of ORBoost. The time complexity of ORBoost is O(T - dN log N) for decision
stumps and O(T - TpN log N) for perceptrons, where 7" is the number of boosting iterations
and Tp is the number of internal perceptron learning iterations.

In addition to the ORBoost variants and the base learners, we also explore some instance-
level weighting schemes to better match the evaluation criteria of the competition. In
particular, for an instance x4,, we design the following schemes to emphasize high-rank
instances and balance the influence of queries with excessive instances.

e weight by rank: wi(X¢n) = Ygn + 1



Table 5: ORBoost with Decision Stumps
T 1000 5000 10000

internal validation | ERR | NDCG | ERR | NDCG | ERR | NDCG
ORBoost-All 0.4536 | 0.7579 | 0.4555 | 0.7625 | 0.4549 | 0.7625
ORBoost-LR 0.4510 | 0.7554 | 0.4518 | 0.7596 | 0.4525 | 0.7614
online ERR | NDCG | ERR | NDCG | ERR | NDCG
ORBoost-All 0.4454 | 0.7639 | 0.4469 | 0.7676 | 0.4467 | 0.7682
ORBoost-LR 0.4447 | 0.7655 | 0.4457 | 0.7680 | 0.4457 | 0.7678

Table 6: ORBoost-All with Decision Stumps and Perceptrons

internal validation online
ERR NDCG ERR | NDCG | training time (min)
decision stump | 0.4536 0.7579 0.4454 | 0.7639 424
perceptron 0.4463 0.7479 0.4447 | 0.7655 6805

e weight by normalizing per query: wa(xgn) = Niq

Ygn+1

e combine the above two schemes: ws3(xg,) = S oD
m\Jgm

e weight by pair-wise ranking:

max(Yqn,Yqm )

w4(an) X Z)yqn — Ygm
m

with ), wa(xq;) = 1 for each query ¢ (like wy).

4.1 Experiments

First we conduct a comparison between ORBoost-All and ORBoost-LR. We randomly keep
10% of the original data set as internal validation, and use the other 90% for training.
In these experiments, decision stumps are used as base learners. As shown in Table 5,
ORBoost-All is better than ORBoost-LR in terms of both ERR and NDCG.

Next, we compare the decision stump and perceptron base learners with ORBoost-All.
The results are shown in Table 6, which indicates that decision stumps are superior to
perceptrons in terms of both effectiveness and efficiency.

Table 7 compares the different weighting schemes proposed. In general, all the weighting
schemes improve the ERR score, although the improvements are small sometimes. The
highest online ERR obtained from ORBoost is 0.4473 with the ws weighting scheme.

5. Linear RankSVM

RankSVM (Herbrich et al., 1999) reduces the ranking problem to binary classification by
pair-wise comparisons. In particular, it works on pairs of examples (Xgn,Xpm) and their
corresponding ranks (Ygn, Ypm) With ygn # ypm. For each pair, linear RankSVM forms a



Table 7: ORBoost-All with Decision Stump under Different Weighting Schemes

T = 1000 training validation online training time (min)
ERR | NDCG | ERR | NDCG | ERR | NDCG
w1 0.4502 | 0.7511 | 0.4539 | 0.7526 | 0.4464 | 0.7636 431
wa 0.4497 | 0.7534 | 0.4562 | 0.7556 | 0.4467 | 0.7651 487
w3 0.4505 | 0.7503 | 0.4548 | 0.7498 | 0.4462 | 0.7618 465
wy 0.4516 | 0.7502 | 0.4550 | 0.7500 | 0.4463 | 0.7594 493
T = 5000 training validation online training time (min)
ERR | NDCG | ERR | NDCG | ERR | NDCG
wi 0.4526 | 0.7577 | 0.4538 | 0.7530 | N/A | N/A 2375
wWa 0.4533 | 0.7610 | 0.4560 | 0.7560 | 0.4471 | 0.7664 2481
w3 0.4536 | 0.7573 | 0.4531 | 0.7524 | 0.4473 | 0.7634 2205
Wy 0.4556 | 0.7590 | 0.4551 | 0.7510 | 0.4459 | 0.7602 2238

Table 8: RankSVM with Different Settings

internal validation online
settings ERR NDCG ERR | NDCG
overall normalization 0.4253 0.699 N/A N/A
query-level normalization 0.4387 0.7213 0.4290 | 0.7226
query-level normalization with weight scheme | 0.4479 0.7449 0.4428 | 0.7550

binary example of the form

(an — Xpm, 2[[yqn < ypmﬂ - 1)

Then, the binary examples are sent to a linear SVM solver (without the bias term) to learn
a decision function, which can be directly used to compute the relevance score for any test
instance.

For this competition, in view of efficiency, we construct only pairs within the same query.
That is, only pairs with ¢ = p are considered. The off-line construction and loading the
data into memory takes O(3_, NZ). Then, similar to Poly-ORSVM, we use LIBLINEAR
(Fan et al., 2008) to solve the binary classification problem with O(T'd) time complexity. To
improve the performance with respect to the ERR criteria, we also carry out a weighting
scheme to emphasize important pairs. In particular, for a pair with rank (ygn,Ypm), its
weight is set to max(ygn, ypm)|yqn_yl’m|.

In addition to the usual overall normalization of the features, we also experiment with
another setting: query-level normalization. The goal of the setting is to include some
query-level information between examples into training.

5.1 Experiments

Table 8 lists the results of RankSVM with different settings. As shown in the table, with
query-level feature normalization, RankSVM can get better ranking quality over that with
overall normalization. This enhancement may be due to the fact that, within a query,



Table 9: RankLLR with Different Settings

unmodified | step changing | step changing + 2°? order expansion
online ERR 0.4410 0.4442 0.4503
online NDCG 0.7606 0.7596 0.7721
time (min) 1.5 1.5 103

feature will become more discriminative after being normalized. In addition, when the
proposed weighting scheme is used, the result is even better than the previous two settings.

6. Rank Logistic Regression

Rank Logistic Regression (RankLR Sculley, 2009) is a pair-wise ranking method similar
to RankSVM, but solves the pair-wise ranking task with binary logistic regression rather
than SVM. The formulation allows the use of stochastic gradient descent to mitigate the
computational difficulties that come from the large number of pairs. Each iteration of
RankLR updates the weight vector of the linear function according to the gradient on a
randomly-chosen candidate pair. We investigate several ways for the random choice, and
find the best one to be uniformly choosing a query ¢ first before drawing draw a pair
(Xgn, Xgm) that come with yg, # ygm. Equivalently, it means we view each query of the
same importance, similar to the ws weighting scheme in ORBoost.

To improve the performance of RankLLR, we adopt two variant settings. First, to empha-
size the importance of top-ranked instances, we multiply the step size of stochastic gradient
descent by (2¥a» — 2% ) for the pairs with ranks (ygn, ygm). Second, we add nonlinearity to
the formulation by considering an exact 2"¢ order polynomial expansion with cross-terms.

The time complexity of our final RankLR is simply O(T - d?), where T is the number of
iterations and O(d?) comes from the weight vector for the 2°¢ order polynomial expansion.

6.1 Experiments

In our experiments, we set the number of iterations 7' to 10000000, which is smaller than
the total with-in query pairs of 5178545. Nevertheless, we observe that such a choice of T’
is sufficient for achieving a promising performance.

Table 9 shows the results of RankLR using 80% of the original training examples. We can
see that both modifications, step changing and 2" order expansion, improve the unmodified
RankLR significantly.

7. BoltzRank

BoltzRank (Volkovs and Zemel, 2009) is a list-wise ranking algorithm, which evaluates how
well an ordered list for a query is ordered with respect to the ground truth of the list.
Given N examples, there are N! possible ordered lists, which are the inputs for BoltzRank.
Since considering all possible lists is time consuming, BoltzRank uses a special sampling
method that reduces the lists being considered while keeping the diversity of the lists.
After sampling, BoltzRank use a neural network as an internal point-wise ranking al-
gorithm. Another variant of BoltzRank uses two neural networks: a point-wise one and



Table 10: BoltzRank with Different Feature Sets
N; Ny training ERR online ERR time per iteration (min)

use all 700 features

15 0.4356 0.4325 150

45 0.4362 0.4339 480
use 6 features selected by AdaRank

6 0.4409 0.4380 1

6 6 0.4429 0.4394
use 10 features selected by AdaRank

10 10 0.4412 0.4393 8
use 12 features selected by AdaRank

12 12 0.4429 0.4393 10

a pair-wise one. Then, BoltzRank operates with gradient decent with respect to an er-
ror function, for which we take the sum of the ERR criteria and a KL-divergence-based
regularization term.

Even with the sampling process, BoltzRank can still be quite slow. Thus, we try con-
ducting feature selection using AdaRank (Xu and Li, 2007) before BoltzRank training. As
we shall see next, AdaRank not only speeds up the training time of BoltzRank, but also
helps get more accurate results.

7.1 Experiments

In our experiments with BoltzRank, one hidden layer with N; hidden nodes is used for
the point-wise neural network, and Ny hidden nodes for the pair-wise one. We set the
learning rate of gradient descent to 0.1. In general, BoltzRank takes 100 to 300 iterations
to converge.

Table 10 shows the performance of BoltzRank with different training features. As shown
in the table, training on the feature set selected by AdaRank can achieve better results
than training on the whole feature set. In addition, using the pair-wise neural networks can
improve the performance over using only the point-wise ones.

8. Final Ensemble

After introducing the six individual methods and their respective results, below we describe
how we combine these approaches.

We obtain 20 models from the six approaches in the their best settings using a random
80% of set 1. These 20 models includes 12 for ORSVM, 1 for Poly-ORSVM, 3 for ORBoost,
1 for RankSVM, 1 for RankLR, and 2 for BoltzRank. We then use the outcomes of these 20
models as features to learn an ensemble using the remaining 20% of set 1. After carefully
studying the advantages and disadvantages of the six approaches for ensemble learning in
task 1, we eventually take RankLR with the 2°¢ order polynomial expansion as the final
choice. The best online results of each approach as well as the final ensemble are listed in



Table 11: Online Performance of All Approaches

ORSVM Poly-ORSVM ORBoost RankSVM RankLR BoltzRank Ensemble

ERR 0.4527 0.4456 0.4473 0.4428 0.4503 0.4394 0.4565
NDCG  0.7820 0.7643 0.7634 0.7550 0.7721 0.7459 0.7870

Table 11. We see that an ensemble is able to achieve significantly better performance than
each individual approach.

9. Summary

We have carefully studied six major approaches for the challenge. Our major findings can be
summarized as follows. First, point-wise methods, in particular ORSVM with the nonlinear
perceptron kernel, yield the best overall performance as individual learners. They are
also computationally more efficient than pair-wise or list-wise ranking approaches. Second,
cost-sensitive, weighting, and query-based normalization settings that respect the ERR
criteria can fine-tune the ranking performance of the basic approaches to get better online
ERR results. Third, ensemble learning by stacking can improve the ranking quality over
individual approaches.
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