
Cost-Sensitive Deep Learning
with Layer-Wise Cost Estimation

Yu-An Chung
Massachusetts Institute of Technology

Cambridge, MA, U.S.A.
andyyuan@mit.edu

Shao-Wen Yang
Amazon

Seattle, WA, U.S.A.
swyang@amazon.com

Hsuan-Tien Lin
National Taiwan University

Taipei, Taiwan
htlin@csie.ntu.edu.tw

Abstract—While deep neural networks have succeeded in
several applications, such as image classification, object detection,
and speech recognition, by reaching very high classification accu-
racies, it is important to note that many real-world applications
demand varying costs for different types of misclassification
errors, thus requiring cost-sensitive classification algorithms.
Current models of deep neural networks for cost-sensitive classifi-
cation are restricted to some specific network structures and lim-
ited depth. In this paper, we propose a novel framework that can
be applied to deep neural networks with any structure to facilitate
their learning of meaningful representations for cost-sensitive
classification problems. Furthermore, the framework allows end-
to-end training of deeper networks directly. The framework is
designed by augmenting auxiliary neurons to the output of each
hidden layer for layer-wise cost estimation, and including the total
estimation loss within the optimization objective. Experimental
results on public benchmark data sets with two cost information
settings demonstrate that the proposed framework outperforms
state-of-the-art cost-sensitive deep learning models.

Index Terms—cost-sensitive classification, deep neural net-
works, cost-sensitive deep learning

I. INTRODUCTION

Deep learning has shown great success on a broad range
of applications such as image classification [1, 2, 3, 4] and
speech recognition [5]. Problems in such applications belong
to a large class of regular classification in which each type of
misclassification error is penalized equally.

Nevertheless, using accuracy as the evaluation metric for
learning does not always produce the most useful classification
system in the real world. In fact, many real-world applica-
tions [6, 7, 8, 9, 10] demand varying costs for different types of
misclassification errors. For example, different costs are useful
for building a realistic face recognition system [9, 11, 12, 13],
in which a government staff being misrecognized as an impos-
tor causes only a slight inconvenience; however, an imposer
misrecognized as a staff can result in serious damage. Even in
a simple digit recognition task, varying costs can be helpful
in representing the nature of the task, as it is common and
understandable to classify an ill-written 7 as 1 but classifying
a 7 as a 4 would be laughable. Such applications call for cost-
sensitive learning, which aims to identify the best classifier
under the application-demanded costs.

Much research effort has been made to study cost-sensitive
classification algorithms. In the works of [14, 15, 16], the
researchers proposed to equip probabilistic classifiers with

Bayes decision theory to enable the classifiers to consider
the cost information during prediction. Some other studies ex-
tended existing cost-insensitive classification algorithms to be
cost-sensitive, such as support vector machine [17]. Recently,
as deep neural networks (DNN) have become state-of-the-art
on a broad range of machine learning applications [5, 3, 4],
researchers are attempting to make DNN cost-sensitive [18].

One successful DNN for cost-sensitive classification, called
Cost-Sensitive DNN (CSDNN), has been recently proposed
by [18]. The training process of CSDNN consists of two
steps. The first step is to initialize the DNN by layer-wise
pretraining using a cost-sensitive variant of the conventional
auto-encoder [19]. The second step involves the fine-tuning
of the DNN with a loss function that incorporates the cost
information. The final CSDNN is thus cost-sensitive in both
pretraining and training stages, and is shown to be a state-of-
the-art algorithm that outperforms other existing cost-sensitive
classification algorithms and some deep learning alternatives.

While CSDNN is state-of-the-art, its design is based on
the conventional fully-connected DNN with sigmoid activa-
tion functions and experiences two issues. First, the design
restricts the applicability to more modern structures such as
convolutional [20, 1] and pooling layers. Second, the sigmoid
function suffers from the problem of diminishing gradients
when the network deepens, even after careful pretraining.

In this paper, we resolve these issues by proposing a
novel framework for cost-sensitive deep learning. To build a
cost-sensitive DNN for a K-class cost-sensitive classification
problem, the proposed framework replaces the layer-wise
pretraining step with layer-wise cost estimation, in which K
additional neurons are added to the output of each hidden
layer. These K additional neurons serve as auxiliary units
that help the DNN learn meaningful representations towards
estimating the costs in each layer. The DNN is then trained
by solving a joint optimization problem on the weighted
sum of the loss functions associated with the auxiliary units.
Experiments conducted on four benchmark data sets and two
cost information settings validate that the proposed frame-
work outperforms CSDNN. The proposed framework can
be easily and effectively attached to deep neural networks
with ReLU [21] activation functions or convolutional neural
networks like AlexNet [1], as shown in the longer version of
this work [22]. The benefits of performance and generality

make the proposed framework a favorable choice in practice.
The idea of using additional neurons as auxiliary units has

been studied by several existing deep learning works, such
as the well-known GoogLeNet [3], which takes the additional
neurons as intermediate classifiers in selected hidden layers
as regularizers. Deeply-Supervised Nets [23] adds additional
neurons as intermediate classifiers to all hidden layers and
reported that the nodes not only serve as regularizers but
also allow improved convergence behavior. BranchyNet [24]
considers auxiliary neurons at hidden layers as early exit
points of prediction to speed up testing time. Nevertheless,
all the previous works focus on using regular (cost-insensitive)
classifiers as auxiliary units. To the best of our knowledge, our
proposed framework is the first work that tackles cost-sensitive
deep learning with layer-wise auxiliary units.

The rest of the paper is organized as follows. In Section II,
we formally define the cost-sensitive classification problem
and introduce related works. Then, we propose our framework
in Section III, and validate the framework with real-world data
sets in Section IV. Finally, we conclude in Section V.

II. PRELIMINARY

We start by formalizing the cost-sensitive problem in Sec-
tion II-A. We then introduce some important cost-sensitive
deep learning works in Section II-B.

A. Cost-Sensitive Classification

In a K-class regular classification problem, a size-N train-
ing set S = {(xn, yn)}Nn=1 is given, where each input vector
xn is within an input space X ⊆ RD, and each label yn is
within a label space Y = {1, 2, ...,K}. Regular classification
aims at using S to train a classifier g : X → Y such that
the expected error Jy 6= g(x)K on the test examples (x, y) is
small.1 That is, each type of misclassification error is charged
with the same penalty.

We consider a general cost-vector setting [14, 17] of cost-
sensitive classification when designing the proposed frame-
work. The cost-vector setting represents the cost information
by coupling an additional cost vector c ∈ [0,∞)K with
each example (x, y), where the k-th component c[k] of the
cost vector c denotes the cost of predicting x as class k,
and naturally c[y] = 0. Consider a cost-sensitive training set
Sc = {(xn, yn, cn)}Nn=1, cost-sensitive classification aims at
using Sc to train a classifier gc : X → Y such that the expected
cost c[gc(x)] on the test examples (x, y, c) is small.

A special case of the cost-vector setting is the cost-matrix
setting, where the cost information is encoded by a K × K
cost matrix C and each entry C(y, k) ∈ [0,∞) indicates
the cost for predicting a class-y example as class k. The
information within the cost matrix can be simply cast as the
cost vectors by defining the cost vector in (x, y, c) as the y-
th row of the cost matrix C. The cost-matrix setting, albeit
less general, allows real-world applications to specify their

1The boolean operation J·K is 1 if the condition is true, and 0 otherwise.

demanded costs more easily. We follow many earlier cost-
sensitive classification works [14, 15, 25, 17, 18] to take the
cost-matrix setting when conducting benchmark experiments.

B. Deep Learning for Cost-Sensitive Classification

Nowadays, most DNNs are designed to solve regular clas-
sification problems [3, 4]. Those DNNs usually consist of
several hidden layers with a softmax layer of K neurons at
the end. Each input vector x propagates through different
hidden layers and is transformed into different levels of
latent representations. The softmax layer converts the last
latent representation into per-class probability estimation, and
takes the class with the highest estimated probability as the
prediction g(x) of the network.

On the other hand, only few works have explored cost-
sensitive classification using shallow or deep neural networks.
Prior to the prevailing of deep learning, [26] pioneered the
study of making neural networks cost-sensitive by sampling
and threshold-moving to tackle the class imbalance problem;
[14] proposed four approaches of modifying neural networks
for cost-sensitivity. Recently, [18] attempted to make cost-
sensitive neural networks deeper by proposing a cost-sensitive
deep learning algorithm called Cost-Sensitive DNN (CSDNN).
In terms of the network structure, CSDNN starts with a DNN
with fully-connected layers, but replaces the softmax layer
at the end of the DNN by a cost-estimation layer. Each of
the K neurons in the cost-estimation layer provides per-class
cost estimation with regression instead of per-class probability
estimation. Then, the class with the lowest estimated cost can
be naturally taken as the prediction gc(x) of the network.
[18] proposed to train the structure with a cost-sensitive loss
function LOSR on the cost-estimation layer.2

[18] then found that the performance of the network can
be further improved by careful pretraining, and proposed a
Cost-Sensitive Auto-Encoder (CSAE) to pretrain the structure
above in a layer-wise manner. CSAE operates similar to a
conventional auto-encoder [19], which is a shallow neural
network that maps any input x to a representation such that
the output x̃ is a close reconstruction of the original input. The
reconstruction error is commonly measured by cross-entropy
loss, denoted by LCE. What makes CSAE different is that
the shallow network is augmented with K additional output
neurons for cost estimation. That is, CSAE attempts to not only
reconstruct x but also digest the cost information by estimating
the cost vector c. The attempt is represented with a mixture
loss (1−β) · LCE + β · LOSR with a balancing coefficient
β ∈ [0, 1] on the output layer of CSAE. When β=0, CSAE
degrades to a conventional auto-encoder.

Figure 1 illustrates how CSAE is used to pretrain CSDNN.
With the pretraining, each layer in CSDNN carries some
ability to estimate the costs. That is, the pretraining makes
the latent representations cost-aware. [18] reported that such
initialization indeed allows CSDNN to converge to a better
optima and to reach state-of-the-art performance.

2The term LOSR stands for One-Sided Regression and roots from a cost-
sensitive SVM work [17]. Details are omitted here for lack of space.

Input - can only
be a flattened vector Hidden - only fully-connected layers

can be used for construction

Output

Initialize

CSAE

CSDNN

Fig. 1. CSAE pretraining for CSDNN [18]

III. PROPOSED FRAMEWORK

While CSDNN is state-of-the-art, its design is based on
fully-connected layers with sigmoid activation functions and
suffers from some issues. We discuss the issues behind
CSDNN that motivate us to propose a better framework in
Section III-A, and present the framework in Section III-B.

A. Motivation

Arguably the key idea within CSDNN is pretraining with
CSAE. To understand the issues behind CSDNN, we first
review the necessity of pretraining for general deep learning.
In earlier years, neural networks used sigmoid or hyperbolic-
tangent activation functions for non-linear transformation in
the hidden layers [27, 28, 29, 19]. Both functions, which
exhibit flatness in part of their curves, can cause the gra-
dients of the network to be small. As the depth of the
network increases, the small gradients in the latter layers of
the network make the gradients in the earlier layers even
smaller during back-propagation, a phenomenon known as the
diminishing gradients. Earlier works by [29] and [19] tackled
the diminishing-gradient problem by proposing a greedy layer-
wise pretraining strategy. Pretraining helped mitigate the prob-
lem to some degree, but the problem would resurface as the
network deepens if we stick with the same activation functions.

In recent years, another route to resolve the diminishing-
gradient problem is to consider other activation functions,
such as the rectifier linear unit (ReLU) [21]. As ReLU does
not suffer from the diminishing-gradient problem as much as
sigmoid or hyperbolic-tangent activation functions, pretraining
is no longer necessary [30]. Nowadays, ReLU and many of its
variants [31, 32] become the mainstream activation functions
in modern deep learning studies [33, 4].

CSDNN [18] intended to conduct cost-sensitive deep learn-
ing by mimicking what [19] did for regular deep learning: us-
ing sigmoid activation functions, and adopting greedy laywer-
wise pretraining. Thus, CSDNN carries the same problem
of diminishing gradients when the network deepens, as our
experimental results in Section IV will demonstrate. To keep
cost-sensitive deep learning up to date with modern deep
learning studies, it is then necessary to conduct cost-sensitive

Input - can be an image or
a flattened vector

Main Output

Hidden - can be any structures such as
convolutional and pooling layers

Auxiliary
Output #1

Auxiliary
Output #2

Auxiliary
Output #3

Auxiliary
Output #4

𝐾 neurons

Fig. 2. a DNN with five hidden layers dressed with the proposed Auxiliary
Cost-Sensitive Targets (AuxCST) framework

deep learning with other routes, such as adopting ReLU and
removing the pretraining stage.

Nevertheless, directly removing the pretraining stage in
CSDNN throws away one important benefit of CSAE in
making the latent representations cost-aware. Next, we present
our proposed framework to rescue the benefit.

B. Layer-Wise Cost Estimation

Our key goal is to construct a DNN that can simultane-
ously enjoy the benefit of cost-aware representation extraction
(similar to that provided by CSAE), and the flexibility of
using any structures. CSAE achieved cost-aware representation
extraction by using K additional neurons in the auto-encoder
for cost estimation. Our key idea is to also use K additional
neurons for cost estimation, but instead of adding them to the
auto-encoders that are separated from the DNN, we propose
to directly put K neurons into each layer of the DNN. That is,
we propose to replace CSAEs by “merging” their additional
neurons with the DNN of our interest. The proposed structure
is illustrated with Figure 2. By dressing the original DNN
with K additional neurons in each layer that serve as auxiliary
outputs, the extracted latent representations carry some ability
to estimate the costs, thus achieving cost-aware representation
extraction almost effortlessly.

As shown in Figure 2, in addition to augmenting K
additional neurons to each layer of the DNN, we follow
CSDNN and replace the output layer of the DNN with a cost-
estimation layer. Then, the only remaining task is to train the
“upgraded” DNN with a proper loss function. We consider a
simple weighted-mixture loss function of the main one-sided
regression loss function at the output layer, and the auxiliary
one-sided regression loss functions at the hidden layers. In
particular, let L(i)

OSR denote the auxiliary loss function for the
output of the i-th hidden layer and L(∗)

OSR denote the main loss
function at the output layer, we train the upgraded DNN with:

H−1∑
i=1

αi · L(i)
OSR + L

(∗)
OSR, (1)

where H is the number of hidden layers in the DNN, and αi

is the balancing coefficient for L(i)
OSR.3

With the proposed structural addons and the mixture loss
function, we are now ready to present the full framework
in Algorithm 1. The framework will be named as Auxiliary
Cost-Sensitive Targets (AuxCST). While the novel framework
appears simple, it carries many practical benefits. With the
framework, we can now flexibly use ReLU or other activa-
tion functions and thus avoid diminishing-gradient problem.
We can also build cost-sensitive DNN with any structures,
such as image inputs with convolutional and pooling layers.
Furthermore, we can apply this framework directly on any
state-of-the-art DNN structures such as ResNet [4] for solving
large-scale cost-sensitive classification problems.

Algorithm 1 Auxiliary Cost-Sensitive Targets (AuxCST)
Input: your favorite regular DNN or any off-the-shelf one [1,

3, 4] with H hidden layers; balancing coefficients
{αi}H−1i=1

1: Replace the softmax layer at the end of DNN with K

regression neurons and loss function L(∗)
OSR

2: for i = 1, 2, . . . ,H − 1 do
3: Add K additional regression neurons with loss function

L
(i)
OSR to the output of the i-th hidden layer and connect

them fully to the i-th hidden layer
4: end for
5: Train the new DNN by back-propagation on (1)

IV. EXPERIMENTS

Three sets of experiments are conducted to validate the
usefulness of the proposed AuxCST framework. Four bench-
mark data sets are used for the experiments: MNIST, CIFAR-
10 [34], and CIFAR-100 [34]. For all data sets, the training
and testing splits follow the source websites; the input vectors
in training set are linearly scaled to [0, 1], and the input vectors
in the testing sets are scaled accordingly.

The data sets were originally collected for regular (cost-
insensitive) classification and thus contain no cost informa-
tion. We adopt the most frequently-used benchmark in cost-
sensitive learning, the randomized proportional setup [25], to
generate the costs. For a regular data set S = {(xn, yn)}Nn=1,
the setup first generates a K × K matrix C, and sets the
diagonal entries C(y, y) to 0 while sampling the non-diagonal
entries C(y, k) uniformly from [0, 10 |{n:yn=k}|

|{n:yn=y}|]. Then, for
each example (xn, yn) in S, its cost vector cn is defined as
the yn-th row of matrix C. The randomized proportional setup
generates the cost information that takes the class distribution
of the data set into account, charging a higher cost (in
expectation) for misclassifying a minority class, and can thus
be used to deal with imbalanced classification problems.

3There is no need to consider L(H)
OSR for the outputs of the last hidden

layer, as the main loss function L(∗)
OSR readily conducts cost estimation.

Arguably one of the most important use of cost-sensitive
classification is to deal with imbalanced data sets. Neverthe-
less, the first three data sets MNIST, CIFAR-10, and CIFAR-
100 are somewhat balanced, and the randomized proportional
setup may generate similar cost for each type of misclassi-
fication error. To better meet the real-world usage scenario
and increase the diversity of data sets, we further conduct
experiments to evaluate the algorithms with imbalanced data
sets. In particular, for each of the first three data sets MNIST,
CIFAR-10, and CIFAR-100, we construct a variant data set by
randomly picking 40% of the classes and removing 70% of
the examples that belong to those 40% classes. We will name
these imbalanced variants as MNISTimb, CIFAR-10imb, and
CIFAR-100imb, respectively.

Our first experiment in Section IV-A intends to investi-
gate the relationship between the balancing coefficient αi

in (1) for using AuxCST and the performance. Our second
experiment in Section IV-B compares DNN equipped with
AuxCST framework with state-of-the-art CSDNN [18]) to
show the usefulness of AuxCST. For the first and the sec-
ond experiments, the cost information was generated by the
randomized proportional setup. In each of the experiments,
we will describe the goal of the experiment, present the
experimental results, and provide discussions and conclusions.

A. How does αi affect AuxCST?

In our proposed Auxiliary Cost-Sensitive Targets (AuxCST)
framework, K additional neurons are added in parallel to each
of the hidden layer in DNN. As an example x propagates
through the network, in addition to the final prediction layer,
the DNN also outputs K values in each hidden layer. Same
with the final prediction layer, these additional K neurons in
each hidden layer also aim to estimate the per-class costs,
and are coupled with LOSR. The final objective function for
optimizing the entire DNN is a weighted sum of the main
one-sided loss for the final prediction layer and the auxiliary
one-sided loss for all hidden layers, and has the form (1).

In this experiment, we would like to investigate the relation-
ship between the selection of αi in (1) and the performance
(average test costs) of AuxCST framework. To simplify the
experiment, we keep all coefficients αi to identical values,
that is, α1 = α2 = ... = αH−1 = α, and (1) becomes:

α ·
H−1∑
i=1

L
(i)
OSR + L

(∗)
OSR, (2)

and we increase the value of α from 0 to 1 by a step 0.1. We
show the results of the imbalanced version of MNIST here,
while similar results have been observed for MNIST, CIFAR-
10, CIFAR-100 and their imbalanced variants. Their cost
information is generated by randomized proportional setup.

We constructed fully-connected DNN with varying numbers
of hidden layers H = {1, 2, 3, 4, 5}, where each hidden layer
consists of 1024 neurons. Note that our proposed AuxCST
framework can be applied to DNN consists of any kind of
layers, but since our goal in current experiment is not to pursue

the best performance but to investigate more about AuxCST,
we choose to use only fully-connected layers for constructing
DNN in order to reduce the amount of hyper-parameters.

The results are shown in Figure 3. We plot 5 curves (because
we tested with 5 kinds of numbers of hidden layers), where
the x-axis is the value of α, and the y-axis is the corresponding
average test costs achieved. Note that when α = 0, it means
that the DNN does not make use of AuxCST framework.
From the figure, no matter how many hidden layers there are,
roughly U-shaped curves could be observed, and the lowest
average test costs were achieved when α fell in the range
0.2 ∼ 0.5, implying that α within this range best balanced
layer-wise and final cost estimation terms.

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

α

a
v
e

ra
g

e
 t

e
s
t

c
o

s
ts

MNIST
imb

1

2

 3

4

5

Fig. 3. The figure depicts the relationship between the selection of α for using
AuxCST framework and the performance achieved on MNISTimb with five
curves. The numbers in the legend are the number of hidden layers, and each
number corresponds to a curve.

B. Compare with state-of-the-art

In this experiment, we build two DNNs with and with-
out AuxCST framework and compare them to state-of-the-
art Cost-sensitive Deep Neural Network (CSDNN) [18]. We
emphasize the two major drawbacks of CSDNN here:

1) CSDNN uses sigmoid functions for non-linear transfor-
mations, and this will eventually results in diminishing
gradients when the network grows deeper.

2) CSDNN can be applied to DNN that consists of only
fully-connected layers, this puts limits on its potential to
be extended and applied to more challenging tasks that
require modern neural components such as convolution
and pooling layers.

To give CSDNN a fair chance of comparison, the two DNNs
we build also consist of only fully-connected layers, and ReLU
is used as activation function. The first DNN is equipped with
AuxCST by setting αi = 0.2, as 0.2 was found to be one of
the best value balancing for (2) in Section IV-A, we will refer
to this DNN as AuxDNN. The second DNN, which will be
referred to as NaiveDNN, did not make use of AuxCST and
was directly optimized by LOSR, it is equivalent to setting
α = 0 in (2).

The experimental results are displayed in Figure 4. The
x-axis is the number of hidden layers and the y-axis is the
corresponding average test costs achieved. As we can observe
from Figure 4, when the number of hidden layers was less than
or equal to three, CSDNN outperformed NaiveDNN probably

because CSAE were doing cost-aware feature extraction rela-
tively well, which accorded to the experimental results in [18].
When the number of hidden layers exceeded three, all of the
three models began to suffer from overfitting, causing their
average test costs to increase. However, by looking at CSDNN
and NaiveDNN, it was interesting to observe that although
the average test costs of both models increased, the extent of
increment of CSDNN was larger than that of NaiveDNN. We
inferred that this phenomenon was ascribed to the diminishing
gradients caused by sigmoid functions used in CSDNN, and
although CSAE had done their best to mitigate this problem
when the network was relatively shallow, CSDNN can still
not escape the fate of diminishing gradients when the network
grew deeper. This phenomenon could not be observed in [18]
because the deepest network they built had only three hidden
layers. As for AuxDNN, it significantly outperformed both
CSDNN and NaiveDNN regardless of the number of hidden
layers, this further demonstrated the usefulness of our pro-
posed AuxCST framework.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

#(hidden)

a
v
e
ra

g
e
 t
e
s
t
c
o
s
ts

MNIST

CSDNN

NaiveDNN

AuxDNN

1 1.5 2 2.5 3 3.5 4 4.5 5
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

#(hidden)

a
v
e
ra

g
e
 t
e
s
t
c
o
s
ts

MNIST
imb

CSDNN

NaiveDNN

AuxDNN

1 1.5 2 2.5 3 3.5 4 4.5 5

1.8

1.85

1.9

1.95

#(hidden)

a
v
e
ra

g
e
 t
e
s
t
c
o
s
ts

CIFAR−10

CSDNN

NaiveDNN

AuxDNN

1 1.5 2 2.5 3 3.5 4 4.5 5
3.5

3.55

3.6

3.65

3.7

3.75

#(hidden)

a
v
e
ra

g
e
 t
e
s
t
c
o
s
ts

CIFAR−10
imb

CSDNN

NaiveDNN

AuxDNN

1 1.5 2 2.5 3 3.5 4 4.5 5
4.1

4.15

4.2

4.25

4.3

4.35

4.4

#(hidden)

a
v
e
ra

g
e
 t
e
s
t
c
o
s
ts

CIFAR−100

CSDNN

NaiveDNN

AuxDNN

1 1.5 2 2.5 3 3.5 4 4.5 5
5.5

5.55

5.6

5.65

5.7

5.75

#(hidden)

a
v
e
ra

g
e
 t
e
s
t
c
o
s
ts

CIFAR−100
imb

CSDNN

NaiveDNN

AuxDNN

Fig. 4. The six sub-figures display the performance of the three competing
DNNs on MNIST, CIFAR-10, CIFAR-100, MNISTimb, CIFAR-10imb, and
CIFAR-100imb, where each curve corresponds to one competitor.

V. CONCLUSION AND FUTURE WORK

We propose a novel framework Auxiliary Cost-Sensitive
Targets (AuxCST) for general end-to-end cost-sensitive deep
learning. Different from the previous approaches, the frame-
work can be applied to DNN that consists of any structures to
tackle challenging cost-sensitive classification problems. Ex-
tensive experimental results demonstrate the usefulness of the
proposed framework for making any advanced DNN models

cost-sensitive. In the future, we will build a deeper network
with AuxCST framework to tackle ImageNet cost-sensitive
classification problem.

ACKNOWLEDGEMENT

We thank members of the NTU Computational Learning
Laboratory and the anonymous reviewers for valuable com-
ments. The work was partially supported by the Ministry of
Science and Technology of Taiwan via MOST 107-2628-E-
002-008-MY3 and 108-2119-M-007-010.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in NeurIPS, 2012.

[2] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-
column deep neural networks for image classification,”
in CVPR, 2012.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” in CVPR,
2015.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in CVPR, 2016.

[5] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-
dependent pre-trained deep neural networks for large-
vocabulary speech recognition,” TASLP, vol. 20, no. 1,
pp. 30–42, 2012.

[6] M. Tan, “Cost-sensitive learning of classification knowl-
edge and its applications in robotics,” Machine Learning,
vol. 13, no. 1, pp. 7–33, 1993.

[7] P. K. Chan and S. J. Stolfo, “Toward scalable learning
with non-uniform class and cost distributions: A case
study in credit card fraud detection,” in KDD, 1998.

[8] W. Fan, W. Lee, S. Stolfo, and M. Miller, “A multiple
model cost-sensitive approach for intrusion detection,” in
ECML, 2000.

[9] Y. Zhang and Z.-H. Zhou, “Cost-sensitive face recogni-
tion,” TPAMI, vol. 32, no. 10, pp. 1758–1769, 2010.

[10] T.-K. Jan, H.-T. Lin, H.-P. Chen, T.-C. Chern, C.-Y.
Huang, B.-C. Wen, C.-W. Chung, Y.-J. Li, Y.-C. Chuang,
L.-L. Li, Y.-J. Chan, J.-K. Wang, Y.-L. Wang, C.-H.
Lin, and D.-W. Wang, “Cost-sensitive classification on
pathogen species of bacterial meningitis by Surface En-
hanced Raman Scattering,” in BIBM, 2011.

[11] J. Lu and Y.-P. Tan, “Cost-sensitive subspace learning for
face recognition,” in CVPR, 2010.

[12] L. Zhang, H. Li, X. Zhou, B. Huang, and L. Shang,
“Cost-sensitive sequential three-way decision for face
recognition,” in RSEISP, 2014.

[13] G. Zhang, H. Sun, Z. Ji, Y.-H. Yuan, and Q. Sun,
“Cost-sensitive dictionary learning for face recognition,”
Pattern Recognition, vol. 60, pp. 613–629, 2016.

[14] M. Kukar and I. Kononenko, “Cost-sensitive learning
with neural networks,” in ECAI, 1998.

[15] P. Domingos, “Metacost: A general method for making
classifiers cost-sensitive,” in KDD, 1999.

[16] B. Zadrozny and C. Elkan, “Learning and making deci-
sions when costs and probabilities are both unknown,” in
KDD, 2001.

[17] H.-H. Tu and H.-T. Lin, “One-sided support vector
regression for multi-class cost-sensitive classification,” in
ICML, 2010.

[18] Y.-A. Chung, H.-T. Lin, and S.-W. Yang, “Cost-aware
pre-training for multiclass cost-sensitive deep learning,”
in IJCAI, 2016.

[19] Y. Bengio, “Learning deep architectures for ai,” Machine
Learning, vol. 2, no. 1, pp. 1–127, 2009.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[21] V. Nair and G. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in ICML, 2010.

[22] Y.-A. Chung, S.-W. Yang, and H.-T. Lin, “Cost-sensitive
deep learning with layer-wise cost estimation,” NTU,
Tech. Rep., 2016, https://arxiv.org/abs/1611.05134.

[23] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu,
“Deeply-supervised nets,” in AISTATS, 2015.

[24] S. Teerapittayanon, B. McDanel, and H. Kung,
“Branchynet: Fast inference via early exiting from deep
neural networks,” in ICPR, 2016.

[25] N. Abe, B. Zadrozny, and J. Langford, “An iterative
method for multi-class cost-sensitive learning,” in KDD,
2004.

[26] Z.-H. Zhou and X.-Y. Liu, “Training cost-sensitive neural
networks with methods addressing the class imbalance
problem,” TKDE, vol. 18, no. 1, pp. 63–77, 2006.

[27] J. Dayhoff, Neural Network Architectures: An Introduc-
tion. Van Nostrand Reinhold Co., 1990.

[28] S. Lawrence, L. Giles, A. C. Tsoi, and A. Back, “Face
recognition: A convolutional neural-network approach,”
TNN, vol. 8, no. 1, pp. 98–113, 1997.

[29] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural Computation,
vol. 18, no. 7, pp. 1527–1554, 2006.

[30] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse
rectifier neural networks,” in AISTATS, 2011.

[31] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical eval-
uation of rectified activations in convolutional network,”
arXiv preprint arXiv:1505.00853, 2015.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification,” in ICCV, 2015.

[33] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier
nonlinearities improve neural network acoustic models,”
in ICML, Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013.

[34] A. Krizhevsky and G. Hinton, “Learning multiple layers
of features from tiny images,” Master’s thesis, Depart-
ment of Computer Science, University of Toronto, 2009.

