Cost Learning Network
for Imbalanced Classification

Chun-Yi Tu
University of California, San Diego
San Diego, CA, U.S.A.
eric.cytu@gmail.com

Abstract—This paper proposes a method to improve the per-
formance of imbalanced classification via reinforcement learning
and cost-sensitive learning. Since the cost information is usually
unavailable for cost-sensitive learning, we incorporate reinforce-
ment learning to optimize the specified metric by adjusting
the cost-matrix for the underlying cost-sensitive classifiers. Our
experiment results show that, with the learned cost-matrix,
the cost-sensitive classifiers can achieve better performance on
several benchmark imbalanced data sets.

I. INTRODUCTION

Class Imbalance is a common problem in practice, including
fraud detection and medical diagnosis. However, when the
number of examples in one class far exceeds the other, regular
classifiers would tend to classify all minority class instances
into the majority class because of the underrepresentation in
the minority class.

Furthermore, the metric for imbalanced classification should
be carefully chosen. While the measure for most classifica-
tion algorithms is accuracy, it is not a proper criterion for
imbalanced classification. For example, in a fraud detection
system where the ratio of fraud is often quite low (1 : 1000),
a classifier which always predicts a transaction as legitimate
one can still achieve 99.9% accuracy. Hence, we often use
G-mean [1] or average Recall to measure the performance of
imbalanced classification.

In this work, we use cost-sensitive classification to deal with
imbalanced classification, and try to improve its performance
with respect to G-mean. We find the critical problem of
cost-sensitive classification is that the real cost information
is usually unavailable, which results in the sub-optimal per-
formance of this method. The existing method only uses
some plausible approaches to obtain the artificial cost, and
then apply cost-sensitive classification. For example, a naive
method for getting the cost is based on the data distribution,
as follows.

" # of examples in class 7’ if i # j. (1)
Cij=0, if i = j.

2

__ 7 of examples in class j
{Cm‘

With this design, when the number of examples in class j
is larger than that in class i, the cost of assigning a class @
instance to class j would also be larger. However, this method
still oversimplifies the problem. Instead, we use reinforcement

Hsuan-Tien Lin
National Taiwan University
Taipei, Taiwan
htlin@csie.ntu.edu.tw

learning to adjust the cost-matrix, and directly optimize the
specified metric for imbalanced classification.

II. RELATED WORK

A. Cost-sensitive Classification

To deal with imbalanced classification, generally, there are
two common approaches [2].

1) Data-level approaches: pre-process the original data to
make data distribution balanced

2) Algorithm-level approaches: modify the learning algo-
rithm to improve the performance on minority class.

The first approach often pre-processes the data by under-
sampling the majority or over-sampling the minority class.
The most popular one is SMOTE (Synthetic Minority Over-
sampling TEchnique) [3] , which over-sampled the minority
class. The synthetic examples are created by taking interpo-
lation between each minority class example and its nearest
neighbors. However, we believe under-sampling could loss
some important information, and over-sampling does not pro-
vide new information.

Instead, we focus on an algorithm-level approach: cost sen-
sitive classification. Regular classification assumes all errors
have the same cost, while cost-sensitive classification assigns
different costs for different kinds of mis-classification error,
and the goal of cost-sensitive classification is to minimize
the total cost. As a result, with higher cost on the minority
class and smaller cost on the majority class, the performance
of imbalanced classification can be improved by avoiding
predicting all examples as majority class.

For instance, Domingos [4] proposed a method, MetaCost,
which makes an arbitrary classifier cost-sensitive. The Meta-
Cost procedure first estimates the probability P(j|x) of the
given example = and the class j, and the optimal prediction
for x is the class ¢ that minimizes the conditional risk:

R(i|z) = ZP(jlx)C(m), )

where R(i|z) is the expected cost of assigning x to class ¢, and
C is the cost matrix. Then, it relabels the training data with
the estimated optimal class, and reapplies the regular classifier
to the relabeled training data.



B. Reinforcement Learning

Reinforcement learning addresses the problem of maximiz-
ing cumulative reward through interactions between agents
and environment. Generally, the learner samples data from the
environment and optimizes an objective function alternately.
To update the cost-matrix, we use Policy gradient in this work,
which are the most popular reinforcement learning algorithms
that can output continuous actions. The basic policy gradient
tries to perform gradient ascent on the following loss function

LPG(H) = ]Et [IOg Uy (at|st)At],

where 7y is the policy network and A; is an advantage function
at time ¢. In this work, we adopt the state-of-the-art policy
gradient method, Proximal Policy Optimization (PPO) [5].
PPO uses the clipped surrogate objective to achieve better
performance.

LCLIP(F)) = Ei[min(r:(0) Ay, clip(re(0),1 — €, 1 + €) A¢)],

7o (as|st)
Moo q (atlse)’

III. METHODS

where () = and € is a hyperparameter.

We model the process of learning a good cost-matrix for
imbalanced-classification as a reinforcement learning problem,
and use PPO as the RL learner to adjust the cost-matrix.
The framework can be separated to two parts: 1. RL learner.
2. Environment. The RL implementation is modified from
OpenAl’s baseline package “PPO2” [6], and our work is
mainly in the design of the environment and the interaction
between them.

A. RL learner

First, the observation s; for RL is defined as the confusion-
matrix of the previous classification result because the learner
can try to adjust the cost-matrix to maximize the total rewards
based on the information from the previous confusion-matrix.
For example, when an off-diagonal entry in the confusion-
matrix is far larger than the others, increasing the correspond-
ing value in the cost-matrix may decrease that value, and thus
improve the performance. The action a; is an update direction
that is added to the cost-matrix (off-diagnoal value of the
previous cost-matrix). The reward A; is a classification metric
(we use average g-mean) from the underlying cost-sensitive
classification trained with the cost-matrix after the update.

The RL learner (PPO) tries to update the cost-matrix from
the regular one in 20 steps, 1 episode, and then the cost-matrix
(environment) will be reset. We use LSTM [7] as the base
model for PPO, since the previous observations can be helpful
to update the cost-matrix. The concept is that, when the RL
learner see a similar confusion-matrix it has seen before, it
may output a better action based on the history information.

B. Environment

The classification is performed in the environment. Since
training a new classifier for every new cost-matrix is very
expensive, in this work, we use direct cost-sensitive decision
making [8] as a cost-sensitive classifier.

1) Direct Cost-sensitive Decision Making: Direct cost-
sensitive decision making is similar to MetaCost. However,
after training a probability estimator, it just uses the estimated
probabilities and the given cost matrix to make the optimal
prediction without relabeling. That is, it simply predicts the
example as the class ¢ that minimizes the conditional risk,
according to the Eq.(2).

2) Expected Cost Regularization for Probability Estimator:
To improve the probability estimator’s performance in im-
balanced classification, we propose to minimize both cross
entropy and expected cost, which could be seen as a regular-
izer in Cost-sensitive learning. Specifically, as the probability
estimator minimizes cross entropy, it also tries to penalize high
expected cost to achieve good probability estimates and low
expected cost. As a result, our probability estimator optimizes
the special loss

Loss = CrossEntropy + ExpectedCost 3)
1 & el

= mlnﬁgyz log p(yilzi, 0) + N Xi:p(yz|xu‘9) Ci

“)

where C; is the row ¢ of the cost matrix.

C. Learning Approach

We first train an Neural Network probability estimator on
different data sets to derive the estimated probability. Then
when resetting the environment, we initialize the cost matrix.
For every step the RL learner takes, we update the cost-matrix
according to the given action, and use direct cost-sensitive
decision making to perform classification. The specified metric
of the classification result is the reward, and the confusion
matrix is the next observation for the RL learner. That is, we
can derive a new classification result for every new cost matrix.
With this design, the RL learner could try to optimize the
cost-matrix and maximize the reward. We present our model
in Algorithm 1.

IV. EXPERIMENTS

In the experiments, we first show the effect of cost regu-
larization. Then, we compare our learning approach with the
existing methods on KEEL imbalanced data sets [9] which
contains multi-class data with varying imbalance ratio.

A. Cost Regularization

In this section, we show the classification result of different
A in Eq.(4). Our model is trained with Adam optimizer. The
model is a NN with 2 hidden layers, and the number of neurons
for both hidden layers are 64. Instead of optimizing regular
cross entropy, we optimize our special loss. The learning rate
is set to 0.001, and the batch size is 32. We use contraceptive
and thyroid from KEEL data sets to show the classifier’s
performance, and follow the traditional cost matrix setting
Eq.(1). Figure 1 and 2 show that when A = 1, the expected cost
is the lowest, and the cross entropy becomes slightly higher
than the others, which corresponds to our intuition that the



Algorithm 1 Cost Learning Network

Require: Training set D = {(x,,,y)})_;
1: Train a probability estimator on D with Eq.(4), and store
all estimated probabilities
2: fort=1to T do
3:  Reset the cost-matrix
4:  for step = 1 to 20 do

5: Update the cost-matrix with the action output from
the RL learner

6: Derive the classification result with the new cost-
matrix according to Eq.(2)

7: Compute the observations and the rewards for the RL
learner

8: end for
9:  Optimize the RL learner
10: end for
Ensure: The best classification result according to the given
metric

cross entropy is compromised to achieve low expected cost.
Figure 3 and 4 show that although the accuracy of A = 1 is
lower than the regular one (A = 0), cost regularization can
achieve a better g-mean.

B. Cost Learning

We compare our method described in Algorithm 1 on
multiclass imbalanced classification with Datta’s boosted en-
semble: Dual-LexiBoost [10]. Note that the C4.5 decision tree
[11] and the k-Nearest Neighbor (kNN) classifier are used
as base learners for Dual-LexiBoost. Table 1 summarizes the
performance of different methods on KEEL data sets. Note that
the three NN methods use the same model described in section
4.1. NN is the regular neural-network classification, which can
be seen as using regular cost-matrix. NN w/ cost-matrix uses
the cost-sensitive classifier specified in section 3.2.1 with the
fixed cost-matrix according to Eq.(1). The proposed NN w/
CLN is described in Algorithm 1, which starts from a regular
cost-matrix, and uses RL to learn an optimal cost-matrix for
the same cost-sensitive classifier.

The experiment result shows that the performance of using
RL to tune the cost-matrix for cost-sensitive NN is superior
to using regular NN or cost-sensitive NN with the cost-matrix
based on data distribution. However, if the performance of
the initial NN is bad or even zero, there is little improvement
of using RL-NN since it is hard to train RL with only zero
reward. Furthermore, most of our method is better than Dual-
LexiBoost. The zero g-mean result of some dataset is because
the data distribution of that is too extreme (only several
examples in some classes) to train a classifier.

V. CONCLUSION

We introduced a framework to directly learn the cost-matrix
for imbalanced classification via reinforcement learning. The
experiments shows the good performance on some bench-
mark imbalanced data sets. To reduce the high computational

complexity, we use direct cost-sensitive decision making to
avoid re-training the base classifier. Besides, the framework is
applicable in more general settings, and can be used with any
probability estimators.

ACKNOWLEDGEMENT

We thank members of the NTU Computational Learning
Laboratory and the anonymous reviewers for valuable com-
ments. The work was partially supported by the Ministry of
Science and Technology of Taiwan via MOST 107-2628-E-
002-008-MY3 and 108-2119-M-007-010.

REFERENCES

[1] Y. Sun, M. S. Kamel, and Y. Wang, “Boosting for
learning multiple classes with imbalanced class distribu-
tion,” in Sixth International Conference on Data Mining
(ICDM’06), Dec 2006, pp. 592-602.

[2] A. Ali, S. M. Shamsuddin, and A. Ralescu, “Classifica-
tion with class imbalance problem: A review,” vol. 7, pp.
176-204, 01 2015.

[3] K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P.
Kegelmeyer, “SMOTE: synthetic minority over-sampling
technique,” CoRR, vol. abs/1106.1813, 2011. [Online].
Available: http://arxiv.org/abs/1106.1813

[4] P. Domingos, “Metacost: A general method for making
classifiers cost-sensitive,” in Proceedings of the Fifth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’99. New
York, NY, USA: ACM, 1999, pp. 155-164. [Online].
Available: http://doi.acm.org/10.1145/312129.312220

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
0. Klimov, “Proximal policy optimization algorithms,”
CoRR, vol. abs/1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

[6] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol,
M. Plappert, A. Radford, J. Schulman, S. Sidor,
Y. Wu, and P. Zhokhov, “Openai baselines,’
https://github.com/openai/baselines, 2017.

[7]1 S. Hochreiter and J. Schmidhuber, “Long short-
term memory,” Neural Comput., vol. 9, no. 8§,
pp. 1735-1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco0.1997.9.8.1735

[8] B. Zadrozny and C. Elkan, “Learning and making
decisions when costs and probabilities are both
unknown,” in Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’01. New York, NY,
USA: ACM, 2001, pp. 204-213. [Online]. Available:
http://doi.acm.org/10.1145/502512.502540

[9] J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac, and

S. Garcia, “Keel data-mining software tool: Data set

repository, integration of algorithms and experimental

analysis framework.” Multiple-Valued Logic and Soft

Computing, vol. 17, no. 2-3, pp. 255-287, 2011.

S. Datta, S. Nag, and S. Das, “On boosting, tug

of war, and lexicographic programming,” CoRR,



contraceptive --- Cross Entropy vs Update Steps

contraceptive --- Expected Cost vs Update Steps

1.10 4 —— Train 0.70 1 —— Train
——- Test ——- Test
1.05 A = A=0 e A=0
» A=0.01 0.65 - « A=0.01
e A=0.1 e A=0.1
1.00 . A=1 e A=1
z @
£ nos S 0.60 A
£ :
9 @
=} 4 a
£ 090 £ 0555 1
0.85
0.50
0.80
0.45
250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Update Steps Update Steps
Fig. 1. The learning curve of Cross entropy(L) and expected cost(R) for different A on contraceptive
thyroid --- Cross Entropy vs Update Steps thyroid --- Expected Cost vs Update Steps
1.0
—— Train ~ —— Train
-—- Test A ——- Test
es| 204 \‘\\\‘ es!
e A=0 | PO s A=0
0.8 4 s A=0.01 DRANN s A=0.01
s A=0.1 N .
. 1.5 .
2 0.6 | %
5. 0.6 S
e k=]
g L
@ 3 1.0 4
£ 044 z
021 0.5 4
0.0 4 0.0 4
T T T T T T T T T T T T T T T T T
250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Update Steps Update Steps
Fig. 2. The learning curve of Cross entropy(L) and expected cost(R) for different A on thyroid
contraceptive --- Accuracy vs Update Steps contraceptive --- G-mean vs Update Steps
0.65 -]
0.6
0.60 S o
0.5
0.55
0.4
> 4
g 0.50 5
2 £
2 0.3
< 0.5 - @
—— Train 0.2 4 —— Train
0.40 1 ——- Test ——- Test
e A=0 s A=0
s A=0.01 0.1 » A=0.01
0.35 o e A=0.1 e A=0.1
e A=1 0.0 1 e A=1
T T T T T T T T T T T T T T T T
250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Update Steps Update Steps

Fig. 3. The learning curve of Accuracy(L) and G-mean(R) for different \ on contraceptive



thyroid --- Accuracy vs Update Steps

thyroid --- G-mean vs Update Steps

104 1.0 4
0.9 0.8
> 05 c 0.6 -
E |
2 © 4] i
0.7 — Train H E
—-- Test ! ! Test
= A=0 0.2 1 A=0
A=0.01 ! i A=0.01
061 e A=01 i A=0.1
e A=1 0.0 4 La L A=1
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Update Steps Update Steps
Fig. 4. The learning curve of Accuracy(L) and G-mean(R) for different A on thyroid
Dataset/G-mean | Dual-LexiBoost w/ C4.5 | Dual-LexiBoost w/ kNN | NN NN w/ cost-matrix | NN w/ CLN
wine 0.9091 0.6959 0.9458 | 0.9458 0.9458
hayes-roth 0.7318 0.6767 0.6745 | 0.7100 0.7688
contraceptive 0.4135 0.5037 0.5605 | 0.4874 0.5911
new-thyroid 0.8716 0.9452 0.9086 | 0.9880 0.9086
thyroid 0.9091 0.4406 0.7482 | 0.6546 0.8348
pageblocks 0.5479 0.5272 0.9677 | 0.5788 0.9657
shuttle 0.6652 0.6617 0.0000 | 0.0000 0.8324
ecoli 0.0000 0.5622 0.0000 | 0.0000 0.0000
yeast 0.0000 0.5081 0.0000 | 0.0000 0.0000
TABLE T

vol.  abs/1708.09684,

COMPARISON OF OUR APPROACH WITH DUAL-LEXIBOOST

2017. [Online].

http://arxiv.org/abs/1708.09684
[11] J. R. Quinlan, C4.5: Programs for Machine Learning.
San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1993.

Available:




