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Abstract—Multiclass cost-sensitive active learning is a rel-
atively new problem. In this paper, we derive the maximum
expected cost and cost-weighted minimum margin strategies for
multiclass cost-sensitive active learning. The two strategies
can be viewed as extended versions of the classical cost-
insensitive active learning strategies. The experimental results
demonstrate that the derived strategies are promising for cost-
sensitive active learning. In particular, the cost-sensitive strate-
gies out-perform cost-insensitive ones on many benchmark
data-sets and justify that an appropriate consideration of the
cost information is important for solving cost-sensitive active
learning problems.
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I. INTRODUCTION

In many applications of machine learning [22], it is expen-
sive to label the examples. For instance, it usually requires
hiring a medical expert to make diagnoses (labels) for x-
ray scans (examples). An active learning [16] setup aims to
achieve decent learning performance by querying the labels
of a few examples strategically, therefore saving the labeling
expense. This setup has been studied in a variety of machine
learning problems [13], [21]. Many existing works [9],
[19] on active learning focus on binary classification. An
intuitive and successful paradigm in active learning for
binary classification is called uncertainty sampling, which
queries the most ambiguous examples. i.e., the examples
near the boundary of the two classes.

An extended problem of binary classification is multiclass
classification, where examples can be associated with one
of the M > 2 labels. The multiple boundaries (for different
classes) of multiclass classification make it more difficult
to define the uncertainty of examples for active learning
by the closeness to the boundaries. Therefore, many recent
works [12], [14] of active learning for multiclass classifica-
tion resort to the use of a probabilistic model for calculating
uncertainty.

Traditionally, the evaluation criterion of multiclass clas-
sification problem is error rate. Cost-sensitive classification
is an extended problem that assigns different penalties for
different types of misclassification. For instance, consider a

three-class classification problem for predicting the state of
patient as (1) SARS-infected, (2) cold-infected, (3) - healthy.
When predicting a SARS-infected patient as healthy, the
society could suffer from a relatively large cost when com-
pared with, for instance, predicting a cold-infected patient as
healthy. The multiclass cost-sensitive classification problem
has been an important research direction for more than a
decade [6]. Among many approaches [1], [18] for multiclass
cost-sensitive classification, an important and pioneering
family of approaches [6], [7] is based on probabilistic mod-
els. In short, the approaches estimate the class probability of
each example, and aim at predicting with the lowest expected
cost based on estimation.

It has been reported [1], [18] an appropriate considera-
tion of cost information can improve the performance of
cost-sensitive classification in a non-active learning setting.
The problem of active learning for multiclass cost-sensitive
classification, shortened as cost-sensitive active learning, is
relatively new. And thus, it is not clear whether the addition
of cost information would be advantageous. In particular,
the strategies for appropriately including cost information
for cost-sensitive active learning have not been thoroughly
studied. Given the wide range of potential applications for
cost-sensitive active learning, we are interested in exploring
strategies for cost-sensitive active learning.

The probabilistic model has been an important component
in both multiclass cost-sensitive classification and multiclass
active learning. In case of multiclass cost-sensitive clas-
sification, the model provides a natural decision function
by calculating expected cost [6], [7]. In case of multiclass
active learning, the model is widely used for designing
querying strategies that combine uncertainty values from
multiple boundaries [11], [12]. Given the importance de-
scribed above, we focus on designing strategies for cost-
sensitive active learning using probabilistic models.

In this paper, we propose two novel strategies for cost-
sensitive active learning using probabilistic models. The idea
for deriving the strategies is maximum expected cost reduc-
tion, which aims at choosing the examples that will reduce
expected cost the most. One strategy selects examples with



minimum expected cost, and can be considered an extension
of a classical (cost-insensitive) active learning strategy called
minimum confidence. Another strategy extends from cost-
insensitive strategy minimum margin and is called cost-
weighted minimum margin. Experimental results demon-
strate that the proposed cost-sensitive strategies generally
outperform other strategies for cost-sensitive active learning.

The rest of this paper is organized as follows. In Sec-
tion II, we formally introduce the setup of cost-sensitive
active learning, and discuss some existing and related strate-
gies for binary and multiclass active learning. Then, in
Section III, we derive the proposed strategies. We present
the experimental results in Section IV and the conclusion in
Section V.

II. MULTICLASS AND COST-SENSITIVE ACTIVE
LEARNING

A. Setup of multiclass active learning

In multiclass classification, we seek a classifier that maps
each example x ∈ X ⊆ Rd to a label y ∈ Y = {1, 2, ...,M},
where M denotes the number of classes. Given a data
set D that contains N training examples represented as
{(xn, yn)}, n = 1, ..., N , a multiclass learner F learns a
decision function fD : X → Y from D, which can be used
for predicting the label of any future test example.

The pool-based setup for (multiclass) active learning has
been studied in many previous works [12], [20]. In this
setup, an active learning algorithm starts from a given
labeled pool D and then iteratively queries an oracle to
obtain the label of some examples from an unlabeled
pool Du = {xi}, i = 1, ..., Nu. In each of the R rounds of
queries, the algorithm can obtain the labels of K exam-
ples D+ from Du. Then, D+ and the corresponding labels
are added into D, and D+ is removed from Du. The method
of selecting the K examples is called a query strategy S,
which takes D,Du, and K into consideration. The learned
model fD is evaluated at the end of each round using an
independently sampled test set Dt. This setup aims to obtain
a decision function fD that achieves a low classification
error on Dt after a small number of querying rounds.

B. Setup of cost-sensitive active learning

In this work, we assume that the cost is provided as
an M ×M cost matrix C, where C(a, b) represents the
cost to be paid when predicting an example of label a as
label b.When adopting the cost-sensitive setting in active
learning framework, there are three changes. Firstly, the
example selection strategy S can take the given cost matrix
as input. Secondly, instead of classification error, we use
classification cost

∑
(x,y)∈Dt

C(y, fD(x)) to evaluate the
strategies. Lastly, the learner F can also take the given cost
matrix as input. The cost-sensitive active learning setup that
we will study is shown in Algorithm 1.

Algorithm 1 Pool-based active learning for multiclass cost-
sensitive classification

Input: a labeled pool D, an unlabeled pool Du, the
number of rounds R, the number of queries in a round K,
a multiclass learner F , a cost matrix C, a labeling oracle
for i = 1...R do
D+ ← S(D,Du, K)
D ← D ∪ (D+, Oracle.label(D+))
Du ← Du\D+

fD ← F(D, C)
Evaluate(fD,Dt, C)

end for

C. Probabilistic model

In this work, we consider probabilistic models to assist
both S and F . The probabilistic models output conditional
distribution P (y|x) after training. The use of probabilistic
models for F has been established in earlier works [6], [7].
In particular, a reasonable F can use P to predict the class
with minimum expected cost. That is, the decision function
can be written as

f(x) = argmin
j∈Y

M∑
k=1

P (y = k|x)C(k, j). (1)

The probabilistic models have also been utilized in many
previous cost-insensitive active learning works [11], [12],
where P assists the combination of the confidence values
associated with the multiple boundaries. In the next sec-
tion, we will introduce some existing cost-insensitive active
learning strategies that are based on probabilistic models.

D. Existing cost-insensitive active learning strategies

1) Binary active learning: Active learning for binary
classification (binary active learning) has been studied in
many works [9], [14]. One of the most popular and suc-
cessful strategies in binary active learning is uncertainty
sampling. It focuses on querying the labels of the most
ambiguous examples. Most uncertainty sampling strategies
rely on a measurement of uncertainty. For example, [17]
defines uncertainty by the distance between an example
and the decision hyperplane of the support vector ma-
chine [5]. The resulting strategy queries the label of the
example that is closest to the decision hyperplane. In the
case of probabilistic model, the uncertainty can be defined
using conditional probability estimates [2]. For example,
consider a probabilistic model that outputs P (y = +1|x).
A natural sampling strategy is used for querying the exam-
ples with P (y = +1|x) ≈ P (y = −1|x). Empirically, un-
certainty sampling is a promising baseline approach for
binary active learning.

Another important strategy for active learning is maximum
expected error reduction [16], which queries examples that



reduce the expected error the most. That is, maximum
expected error reduction queries by solving

argmax
D+

∑
D∪Du

Eerror(fD)− Eerror(fD∪D
+
). (2)

where Eerror(f) denotes the expected error made by the
classifier f . In the case of binary classification, the resulting
strategy is usually similar to uncertainty sampling strategies.

2) Multiclass active learning: In binary active learning,
many existing uncertainty sampling strategies consider the
relation between examples and the decision boundary, and
define uncertainty using this information. In multiclass active
learning, there are multiple decision boundaries between
classes. For example, there are in total M×(M−1)

2 decision
hyperplanes in a one-versus-one SVM classifier, and each
of them may suggest a different uncertainty value for an
example. When extending binary active learning strategies
to a multiclass problem, an appropriate combination of
uncertainty values is an ongoing research issue.

There are several existing works on multiclass active
learning, and most of them focus on uncertainty-based
strategies. For example, [21] computes the uncertainty using
the loss associated with some binary classification sub-
problems that are constructed by output coding. Further,
[11], [12], and [13] adopt a model for estimating the class
probability distribution P (y|x). Then, the uncertainty can be
easily defined by using P asa confidence measurement of
an example x.

Next, we introduce two of the most representative uncer-
tainty sampling (cost-insensitive) active learning strategies,
minimum confidence and minimum margin, which can be
coupled with probabilistic models.

3) Minimum confidence: The minimum confidence strat-
egy selects the least confident examples to label. In the case
of probabilistic model, the confidence for an example can be
defined as the class probability of the predicted class. That
is, the strategy selects

argmin
D+

∑
x∈D+

P (y = fD(x)|x,D), (3)

where fD(x) always chooses the most probable class
fD(x) = argmax

y
P (y|x,D).

4) Minimum margin: In addition to the most probable
class, minimum margin considers the information of the
second probable class. This strategy chooses the examples
with the minimum confidence difference between the most
and the second most probable classes.

argmin
D+

∑
x∈D+

(
P (y = fD(x)|x,D)

−P (y = fDsecond(x)|x,D)
)
, (4)

where fD(x) returns the most probable class and
fDsecond(x) = argmax

y 6=fD(x)

P (y|x,D) is the second most probable

class. The use of minimum margin for multiclass active
learning has been analyzed in [12].

III. STRATEGIES FOR COST-SENSITIVE ACTIVE
LEARNING

A. Strategy: Maximum expected cost

The first strategy that we propose is maximum expected
cost. We show the derivation steps for the cost-sensitive
setting.
Basic idea. Because the goal of cost-sensitive active learning
is to achieve a low cost, a reasonable cost-sensitive active
learning strategy is used for obtaining a query set of unla-
beled examples D+, which can minimize the expected cost

Ecost(fD∪D
+

C )

=
∑

x∈D∪Du

M∑
k=1

P (y = k|x)C(k, fD∪D
+

C (xi)). (5)

The difficulty for the minimization of (5) is the need
of checking every possible D+ with the unknown labels.
Even if we want to approximate fD∪D

+

C (xi) by assuming
the labels in D+, we still need to train classifiers fD∪D

+

C for
all M |D

+| combinations, which is computationally infeasible
in many cases.
Maximum expected cost reduction. To seek a computation-
ally feasible approach, we start by mimicking the derivation
of the maximum error reduction. Because the size of D+ is
usually considerably smaller than D, fDC and fD∪D

+

C shall
be similar. Thus, we attempt to determine the query set D+

with the help of fDC . By considering the expected cost of fDC ,
the optimal D+ shall maximize the amount of the expected
cost reduction. That is,

D+
opt = argmax

D+

(
Ecost(fDC )− Ecost(fD∪D

+

C )
)

.

Further, we replace Ecost(fDC ) and Ecost(fD∪D
+

C ) with (5)
and use Ex

cost(f
D
C ) to denote the expected cost of fDC on x.

Thus D+ can be calculated as follows:

D+
opt = argmax

D+

∑
x∈U

Ex
cost(f

D
C )− Ex

cost(f
D∪D+

C ). (6)

Approximation. We first attempt to eliminate the most
computationally expensive component Ex

cost(f
D∪D+

C ). For
{x|x ∈ U , x /∈ D+}, fDC (x) and fD∪D

+

C (x) are expected to
be close. This is attributed to the fact that x is either
shared by both sets or lies out of both sets. Hence, the two
classifiers should share similar predictions on x. Then, we
can substitute U with D+ and obtain

D+
opt ≈ argmax

D+

∑
x∈D+

Ex
cost(f

D
C )− Ex

cost(f
D∪D+

C ).

In case of x ∈ D+, Ex
cost(f

D∪D+

C ) is expected to be
small because x is within the training set of fD∪D

+

C .
Thus, fD∪D

+

C can probably make a low-cost prediction



for any x ∈ D+. Thus, we can approximate the difference
Ex

cost(f
D
C )− Ex

cost(f
D∪D+

C ) by Ex
cost(f

D
C ), and obtain

D+
opt ≈ argmax

D+

∑
x∈D+

Ex
cost(f

D
C ) (7)

= argmax
D+

∑
x∈D+

M∑
k=1

P (y = k|x)C(k, fDC (x)).(8)

Relationship between minimum confidence and maxi-
mum expected cost. The maximum expected cost is very
similar to minimum confidence. In our setting, minimum
confidence can be written as

D+
opt = argmax

D+

∑
x∈D+

M∑
k=1

P (y = k|x)Err(k, fD(x)), (9)

where Err(k, fD(x)) = 1 if k 6= fD(x), otherwise
Err(k, fD(x)) = 0. The only difference between (8)
and (9) is C and Err. That is, minimum confidence can
be viewed as a special case of maximum expected cost that
considers Err to be C.

B. Strategy: Cost-weighted minimum margin

As discussed in Section II, another popular strategy for
cost-insensitive active learning is minimum margin, which
focuses on the first and second most probable classes.

Similar to the above relationship between minimum con-
fidence and maximum expected cost, we replace the confi-
dence terms with the expected cost in (4) to obtain a cost-
sensitive version of minimum margin strategy. The resulting
strategy is

D+
opt = argmin

D+

∑
x∈D+

(
Ex

cost(f
D
C,second)− Ex

cost(f
D
C )
)
. (10)

Note that the fDC,second here is different from the one in (4).
It predicts the class with second lowest expected cost. This
strategy chooses the examples with the smallest gap between
the first-choice and the second-choice classes in terms of the
expected cost. Thus we call this strategy as cost-weighted
minimum margin in the following discussions.

IV. EXPERIMENTS

Next, we evaluate the proposed cost-sensitive strategies
and compare them with cost-insensitive ones on real-world
multiclass datasets.

A. Experiment settings

Data set. We consider ten benchmark multiclass datasets in
the experiment. Every dataset is split into a training set and
a test set, with 50% examples in the training set and the rest
examples in the test set. The training set is used as the pool
U and the test set is used for evaluating the performance of
the strategies. Table I shows the summary of these datasets.
Probabilistic model. We present the results on two types
of probabilistic models. One is the one-versus-one SVM

Table I
SUMMARY OF MULTICLASS DATASETS

Name Class # of examples Feature
Wine 3 178 13
Glass 6 264 9

SVMguide4 6 612 10
Vehicle 4 846 18
Vowel 11 990 10
Segment 7 2310 19

Dna 3 3186 180
Satimage 6 6435 36
USPS 10 9298 256

Pendigits 10 10992 16

with probability estimation, which has been in use for
many years and its application for active learning is studied
in [12]. This model applies Platt’s method [15] on multiclass
(one-versus-one) SVM to obtain a probabilistic output from
discrete classification results. The details of the multiclass
probability estimation step are described in [10]. We use
the implementation in LIBSVM [4] Tools to realize the
probabilistic learner and take C = 1 with a linear kernel.

The other type of model is random forest [3]. In our
setting, we use the implementation in Weka [8]. Random
forest determine the probability values by the voting of trees.
Query strategy. We compare five query strategies in our
experiment. In addition to maximum expected cost and cost-
weighted minimum margin proposed in Section III, we
include minimum confidence and minimum margin men-
tioned in Section II, to observe the influence of adding
the cost information. We also consider the random strategy,
which randomly selects examples to label. In the past active
learning research, the random strategy usually shows a
certain strength that is comparable to many active learning
strategies [12].
Cost matrix. We adopt the most popular setup in cost-
sensitive classification, randomized proportional, as used
by [1].
Evaluation. We evaluate the strategies on the test set. A
classifier with a relatively low average classification cost

1
|Dt|

∑
(x,y)∈Dt

C(y, f(x)) is judged as a better classifier.

B. Comparison of strategies

In this section, we compare the performance of strategies
under several situations. Figure 1 shows the active learning
results on the dataset Vehicle. From this figure we can see
that the cost-sensitive strategies behave better than the other
strategies and are saturated when approximately 100 out of
400 labels are known in Figure 1(a). The cost-insensitive
active learning strategies (minimum confidence and minimum
margin) act worst. The random strategy is a stable choice
in between.

Next, we compare the strategies on all datasets by ran-
domly choosing 10% of the examples in pool U as the initial
training set and then run 10 rounds of active learning. In each
round, we select 1% of the examples for querying. That is,
after 10 rounds, 20% of the examples in the pool will have



(a) One-versus-one SVM with probability estimation (b) Random forest

Figure 1. Cost comparison on dataset Vehicle

been labeled. We present two values, the cost at the end of
active learning and the AUC (area under curve) of cost, in
the following experiments.
Comparison of strategies using one-versus-one SVM with
probability estimation. In Table II, we list the results using
one-versus-one SVM with probability estimation as the
probabilistic model. The best ending cost and AUC for each
dataset is marked in bold. The results show that maximum
expected cost and cost-weighted minimum margin usually
perform better than the other criteria. Minimum margin is
often promising in terms of AUC but not good at the ending
cost. The other two strategies generally fall behind.
Comparison of strategies using random forest. We also
carry out a comparison for strategies using random forest as
the probabilistic model. The results are shown in Table III.
The cost-weighted minimum margin strategy achieves the
best average rank, while maximum expected cost shows sim-
ilar performance. Cost-insensitive strategies do not perform
well in this experiment, and can be even worse than random.
Note that, when using random forest as the probabilistic
model, some active learning strategies lead to an increase in
the cost. We have marked the values whose ending cost is
greater than the starting cost with *. This situation usually
occurs when minimum confidence and minimum margin are
used for active learning, and will be an interesting future
research direction to study the cause.

The above comparisons confirm the importance of using
cost-sensitive strategies for cost-sensitive active learning.

V. CONCLUSION

In this research, we studied cost-sensitive active learning
using probabilistic models. We derived the maximum ex-
pected cost strategy based on the idea of maximum expected
cost reduction. Then, we replace the confidence term in min-
imum margin with the expected cost to get a cost-sensitive
version of minimum margin strategy called cost-weighted
minimum margin. We compared the performance of cost-
sensitive strategies with that of cost-insensitive ones and

a random strategy. The results revealed that cost-sensitive
strategies often outperformed cost-insensitive ones, and thus,
it was important to use cost-sensitive strategies for cost-
sensitive active learning.
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