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Abstract This paper proposes a novel ranking approach, cost-sensitive ordi-
nal classification via regression (COCR), which respects the discrete nature
of ordinal ranks in real-world data sets. In particular, COCR applies a the-
oretically sound method for reducing an ordinal classification to binary and
solves the binary classification sub-tasks with point-wise regression. Further-
more, COCR allows us to specify mis-ranking costs to further improve the
ranking performance; this ability is exploited by deriving a corresponding cost
for a popular ranking criterion, expected reciprocal rank (ERR). The result-
ing ERR-tuned COCR boosts the benefits of the efficiency of using point-wise
regression and the accuracy of top-rank prediction from the ERR criterion.
Evaluations on four large-scale benchmark data sets, i.e., “Yahoo! Learning
to Rank Challenge” and “Microsoft Learning to Rank,” verify the significant
superiority of COCR over commonly used regression approaches.
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1 Introduction

In web-search engines and recommendation systems, there is a common prac-
tical need to learn an effective ranking function for information retrieval. In
particular, given a query, the ranking function can be used to order a list of
related documents, web pages, or items by relevance and display users the
relevant items at the top of the ranking list to the users. In recent years, the
learning to rank has drawn much research attention in the information re-
trieval and machine learning communities (Richardson et al 2006; Liu 2009;
Lv et al 2011).

Three important characteristics of the learning problem will be considered
in this paper. First, the real-world data sets for ranking are usually huge—
containing millions of documents or web pages. This paper focuses on such a
large-scale ranking problem. Second, many of the real-world benchmark data
sets for learning to rank are labeled by humans with ordinal ranks—that is, by
using qualitative and discrete judgments, for example, {highly irrelevant,
irrelevant, neutral, relevant, highly relevant}. We shall focus on learn-
ing to rank from such ordinal data sets. Third, the effectiveness of the ranking
function is often evaluated by the order of the items in the resultant ranking
list, with more emphasis on items featuring at the top of the ranking list.
Such list-wise evaluation criteria match users’ perception in using the ranking
function for information retrieval. We shall study learning to rank under the
list-wise evaluation criteria.

To tackle the large-scale ranking problem, many learning-based ranking
algorithms are based on a longstanding method in statistics and machine
learning: regression. In particular, these algorithms treat the ordinal ranks
as real-valued scores and learn a scoring function for ranking through regres-
sion. Theoretical connections between regression and list-wise ranking criteria
have been studied by Cossock and Zhang (2006). The benefit of regression is
that there are some standard and mature tools that can efficiently deal with
large-scale data sets. Nevertheless, standard regression tools often require some
metric assumptions on the real-valued scores (e.g., rank 4 is twice as large as
rank 2), while the assumptions do not naturally fit the characteristics of the
ordinal ranks. A few other studies, therefore, try to resort to ordinal clas-
sification, which is more aligned with the qualitative and discrete nature of
ordinal ranks. Some theoretical connections between classification and list-wise
ranking criteria have been established by Li et al (2007).

In this study, we improve and combine the regression and the classification
approaches to tackle the ranking problem. In particular, we connect the prob-
lem with cost-sensitive ordinal classification, a more sophisticated setting than
the usual ordinal classification. Cost-sensitive classification penalizes different
kinds of mis-predictions differently; therefore, it can express the list-wise eval-
uation criteria much better. We study theoretical guarantee that allows the use
of cost-sensitive classification to embed a popular list-wise ranking criterion—
expected reciprocal rank (ERR; Chapelle et al 2009). Furthermore, we exploit
an existing method to reduce the cost-sensitive ordinal classification problem
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to a batch of binary classification tasks (Lin and Li 2012). The reduction
method carries a strong theoretical guarantee that respects the qualitative
and discrete nature of the ordinal ranks. Finally, we utilize the benefits of the
regression tools by using them as soft learners for the batch of binary classifica-
tion tasks. We name the whole framework cost-sensitive ordinal classification
via regression (COCR). The framework not only enables us to use the well-
established regression tools without imposing unrealistic metric assumptions
on ordinal ranks, but also allows us to match the list-wise evaluation criteria
better by embedding them as costs.

Evaluations on four large-scale and real-world benchmark data sets, “Ya-
hoo! Learning to Rank Challenge” and “Microsoft Learning to Rank,” verify
the superiority of COCR, over conventional regression approaches. Experimen-
tal results show that COCR can perform better than the simple regression
approach using some common costs. The results demonstrate the importance
of treating ordinal ranks as discrete rather than as continuous. Moreover, after
adding ERR-based costs, COCR can perform even better, thereby demonstrat-
ing the advantages of connecting the top-ranking problem to cost-sensitive
ordinal classification.

While this paper builds upon the reduction method proposed by Lin and
Li (2012) as well as the ordinal classification work by Li et al (2007), there are
three major differences. The reduction to regression instead of binary classifi-
cation is a key idea that has not been explored in the literature; the focus on
the ERR criterion for the top-ranking problem instead of the earlier studies
on the discrete costs or the Normalized Discounted Cumulative Gain (Lin and
Li 2012) is a novel contribution on the theoretical side; the thorough and fair
comparison on four real-world benchmark data sets is an important contribu-
tion on the empirical side.

This paper is organized as follows. We introduce the ranking problem and
illustrate related works in Section 2. We formulate the COCR framework in
Section 3. Section 4 derives the cost corresponding to the ERR criterion. We
present the experimental results on some large-scale data sets and conduct
several comparisons in Section 5. We conclude in Section 6.

2 Setup and Related Work

We work on the following ranking problem. For a given query with index g,
consider a set of documents {Xq,i}i]\;(lq), in which N(g) is the number of docu-
ments related to ¢ and each document x,; is encoded as a vector in X C RP.
For the task, we attempt to order all x,; according to their relevance to g.
In particular, each x, ; is assumed to be associated with an ideal ordinal rank
value y,; € Y = {0,1,2,--- ,K}. We consider a data set that contains @

queries with labeled document-relevance examples:

D= {(Xq,iayq,i): q:1727 aQaZ:1527 ’N(q)}
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The goal of the ranking problem is to use D to obtain a scoring function
(ranker) r(x): X — R, which can obtain an ordering introduced by the pre-
dicted value of 7(xg;) that is close to the ordering by the target value y, ;.

For simplicity, we use n to denote the abstract pair (g,4). Then, the data
set D becomes D = {(X,,yn)}_;, where N is the total number of documents.
Learning-based approaches for the ranking problem can be classified into the
following three categories (Liu 2009):

— Point-wise: The point-wise approach aims at directly predicting the score
of x. In other words, it learns r(x,;) = y4,; to make the orderings intro-
duced by r and y as close as possible. When y is real-valued, this approach
is similar to traditional regression; thus, several well-established tools in
regression can be applied directly. A representative regression approach
for point-wise ranking has been studied by Cossock and Zhang (2006).
When the target value y belongs to an ordinal set {0,1,--- , K}, the rank-
ing problem can be reduced to an ordinal regression (also called ordinal
classification). The ordinal regression can then be solved by the binary de-
composition approach (Frank and Hall 2001; Crammer and Singer 2002; Li
et al 2007) with theoretical justification (Lin and Li 2012).

— Pair-wise: In this category, the ranking problem is transformed into a bi-
nary classification that decides whether x, ; is preferred over x4 ;. In other
words, the aim is to learn a ranker r such that

sign (r(xq.i) — 7(%q,)) ~ sign (Ya.i — Ya.5)

which captures the local comparison nature of ranking. Approaches for
pair-wise ranking usually construct pairs (x4, X4,;) between examples with
different y and feed the pairs to binary classification tools to obtain the
ranker. Nevertheless, given a query with N(q) documents, the number of
pairs can be as many as Q(N (q)Q), which makes the pair-wise approach
inefficient for large-scale data sets. Representative approaches in this cate-
gory include RankSVM (Joachims 2002), RankBoost (Freund et al 2003),
and RankNet (Burges et al 2005). When the target value y belongs to an or-
dinal set {0,1,--- , K}, the ranking problem is called multipartite ranking,
which is closely related to ordinal regression, as discussed by Fiirnkranz
et al (2009).

— List-wise: While point-wise ranking considers scoring each instance x, ; by
itself and pair-wise ranking tries to predict the local ordering of the pair
(Xq,i, Xq,5), list-wise ranking targets the complete ordering of {Xq’i}fi(f) in-
troduced by the ranker . This approach attempts to find the best ranker r
by optimizing some objective function that can evaluate the effectiveness
of different permutations or orderings introduced by different rankers. The
objective function is called a list-wise ranking criterion, and the direct op-
timization allows the learning process to take into account the structure
of all {x,;}. However, since there are (N (q))! possible permutations over
N(q) documents, list-wise ranking can be computationally more expensive
than pair-wise ranking. One possible solution is to cast list-wise ranking
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as a special case of learning structured output spaces (Tsochantaridis et al
2005; Shivaswamy and Joachims 2002), and apply the efficient tools in
structured learning (Yue and Finley 2007). Other possible solutions include
LambdaRank (Burges et al 2006), BoltzRank (Volkovs and Zemel 2009),
and NDCGBoost (Valizadegan et al 1999), which are generally based on
designing a special procedure that optimizes the (possibly) non-convex and
non-smooth listwise ranking criterion for a particular learning model.

This study focuses on improving the point-wise ranking by incorporat-
ing structural information. In specific, we propose to transform the list-wise
ranking criterion as the costs, and introduce it into the reduction process for
ordinal ranking. The proposed approach not only inherits the benefit of point-
wise ranking in terms of dealing with large-scale data sets, but also possesses
the advantage of list-wise ranking that takes the structure of the entire ranking
list into account.

3 Cost-sensitive Ordinal Classification via Regression

In this section, we formulate the framework of Cost-sensitive Ordinal Classi-
fication via Regression (COCR). We first describe how to reduce a ranking
problem from cost-sensitive ordinal classification to binary classification based
on the work of Lin and Li (2012). Then, we discuss how the reduction method
can be extended to pair with regression algorithms instead of binary classifi-
cation ones.

3.1 Reduction to Binary Classification

We first introduce the reduction method by Lin and Li (2012), which is a point-
wise ranking approach and solves the ordinal classification problem. Consider
a data set D = {(xpn,yn)})_; and possible ordinal ranks J = {0,1,--- ,K};
the reduction method learns a ranker r: X — ) from D such that r(x) is close
to y € Y. The task of learning a ranker r is decomposed to K simpler sub-
tasks, and each sub-task learns a binary classifier gx: X — {0,1}, where k =
1,2,---, K. In specific, the k-th sub-task is to answer the following question:

“Is x ranked higher than or equal to rank k ?”

Each binary classifier g, is learned from the transformed data set:

D) — {(Xm be“) }:]:1 ’

where

b%k) = [yn > K] (1)
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encodes the desired answer for each x,, on the associated question. If all binary
classifiers g, answer most of the associated questions correctly, it has been
theoretically proved by Lin and Li (2012) that a simple “counting” ranker:

K
rg(x) =) gr(x) (2)
k=1

can also predict rank y closely.

In addition to reducing from the ordinal classification task to binary clas-
sification ones, the method allows us to specify costs for different kinds of
mis-ranking errors. In particular, each example (x,,y,) can be coupled with
a cost vector ¢, whose k-th component c,[k] denotes the penalty for scor-
ing x,, as k. The value of ¢, [k] reflects the extent of the difference between y,
and k. Thus, it is common to assume that c¢,[k] = 0 when k& = y,,. In addi-
tion, the cost c,[k] is assumed to be larger when k is further away from y,,.
Two common functions satisfy the requirements and have been widely used in
practice:

— Absolute cost vectors:

Culk] = |yn — K| (3)
— Squared cost vectors:

cnlk] = (yn — k)% (4)

For instance, suppose that the highest rank value K = 4. Given an example
(Xn, Yn) with y, = 3, the absolute cost is (3,2,1,0,1) and the squared cost is
(9,4,1,0,1). Note that the squared cost charges more than the absolute cost
when k is further away from v,. The cost vectors give the learning algorithm
some additional information about the preferred ranking criterion and can be
used to boost ranking performance if they are chosen or designed carefully.
The reduction method transforms the cost vector c,, to the weight of each

binary example (xn, b%k)) to indicate its importance. The weight is defined as

wh = ‘cn k] — enlk — 1] (5)

Intuitively, when the difference between the k-th and the (k — 1)-th costs is
large, a ranker will attempt to answer the question associated with the k-th
rank correctly. The theoretical justification for using the weights is shown by
Lin and Li (2012). The weights w¥ are included as an additional piece of
information when training g. Many existing binary classification approaches
can take the weights into account by some simple changes in the algorithm or
by sampling (Zadrozny et al 2003).

In summary, the reduction method starts from a cost-sensitive data set

D = {(Xn, Yn, cn) })_; and transforms it to weighted binary classification data
N

sets D) = {(Xn,bglk),w,(lk))} , each of which is used to learn a binary
n=1

classifier g that will be combined to get the ranker r, in (2). Note that the
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absolute cost simply results in wif) =1 (equal weights) and leads to the

simple weight-less version mentioned earlier in this section. Many existing
approaches (Li et al 2007; Mohan et al 2011) also decompose the ordinal
classification problem to a batch of binary classification sub-tasks in a weight-
less manner and thus implicitly consider only the absolute cost. The reduction
method, on the other hand, provides the opportunity to use a broader range
of costs in a principled manner.

3.2 Replacing Binary Classification with Regression

The reduction method learns a hard ranker r, from X to Y = {0,1,2,--- , K};
that is, many different instances x4 ; can be mapped to a same rank. While such
a ranker carries a strong theoretical guarantee, it results in ties of ordering,
and is, therefore, usually not preferred in practice. Next, we discuss how we
can obtain a soft ranker from X to R instead.

The basic idea is that we replace gi: X — {0, 1} with soft binary classifiers
hy: X — [0, 1], where [hy(x) > 0.5] is the hard classifier gi(x) in the predic-
tion, while the value |h(x) — 0.5| represents the confidence of the prediction.
Note that the hard ranker r4 in the reduction method is composed of a batch
of hard binary classifiers gi. To use the detailed confidence information af-
ter getting hy, we propose to keep Equation (2) unchanged. That is, the soft
ranker will be constructed as

ri(x) = Y hi(x). (6)

k=1

Below we show that r, can be a reasonable ranker by using the above
equation. The common way to learn the soft binary classifiers hy is to use
regression. Traditional least squares regression, when applied to the binary
classification problem from x to some binary label b € {0,1}, can be viewed
as learning an estimator of the posterior probability P(b = 1|x). Following
the same argument, each soft binary classifier hy(x) in our proposed approach
estimates the posterior probability P(y > k|x). Let us first assume that each
hy is perfectly accurate with regard to the estimation. That is, let P, = P(y =
k|x),

P1+P2++PK:h1(X)
Py+ -+ Px = ha(x)
PK:hK(X).

Taking a summation on both sides of the equations,

K
Pi+2Py+ -+ KPg =Y hy(x) = rp(x).
k=1
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Note that the left-hand-side is the expected rank:

K
E(ylx) =) k- Py = klx).
k=0

In other words, when all soft binary classifiers hy(x) perfectly estimate P(y >
k|x), the soft ranker rj(x) can also perfectly estimate the expected rank
given Xx.

Note that (6) has been similarly derived by Fiirnkranz et al (2009) to
combine the scoring functions (i.e. soft binary classifiers) that come from the
naive binary decomposition approach of Frank and Hall (2001), which is a
precursor of the reduction method (Lin and Li 2012). Both the derivations
of Fiirnkranz et al (2009) and our discussions above assume perfect estimates
of P(y > k|x). In practice, however, soft binary classifiers hi(x) may not be
perfect and can make errors in estimating P(y > k|x). In such a case, the next
theorem shows that rp(x) is however guaranteed to be close to the expected
rank given x.

Theorem 1 Consider any binary classifiers hy: X — R for k=0,1,--- | K.
Assume that

i( y>k|x))2 < é2.

k=1
Then,
(rn(x) — E(y|x))* < Ké2.

Proof
E(ylx))®

K 2
hi(x) = > P(y > klx) )
k=1
K
v) (oo
1 1

Note that Inequality (7) is based on the Cauchy-Schwarz inequality, which
states that the inner product between two vectors is no more than the length-
multiplication of the vectors:

(

(5

Ke

%~ =
NNgls %

IA
™=
—

hi(x) — Ply > k|x)>2> (7)
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Theorem 1 shows that when soft binary classifiers hj, can estimate the pos-
terior probability P(y > k|x) correctly, the soft ranker 7, will also obtain the
expected rank of x closely. According to the theorem, we propose to replace
the binary classification algorithm in the reduction method with a base regres-
sion algorithm A,.. The base regression algorithm attempts to learn soft binary
classifiers hy and obtain a soft ranker rp, by using Equation (6). Algorithm 1
summarizes the process of the proposed COCR framework.

Algorithm 1 The COCR Framework
Input: D = {(xn,yn,cn)}nj\;1

for k=1,2,--- ,K do
1. Transform the cost-sensitive data set to a weighted binary classification data set

N
D) = {(xn,b;’“),wif“))} with (1) and (5).
n=1
2. Apply a base regression algorithm A, on D) to get a soft binary classifier hy, (x).

end for
return r, with (6).

4 Costs of the Criterion of Expected Reciprocal Rank

In this section, we embed a list-wise ranking criterion, Expected Reciprocal
Rank, as the costs in the COCR framework. The criterion has been used as
the major evaluation metric in the Yahoo! Learning to Rank Challenge.!

4.1 Expected Reciprocal Rank

Expected Reciprocal Rank (ERR; Chapelle et al 2009) is an evaluation cri-
terion for multiple relevance judgments. Consider a ranker r that defines an
ordering:

T {172a 7N(Q)}_>{1727 ’N(q)}7

where 7(¢) is the position of example (x44,Yq,:) in the ordering introduced
by 7, with the largest r(x,;) having 7(i) = 1. Note that the ordering is a
bijective function. For simplicity, we use o(j) to denote the inverse function
77 1(j); then, the ERR criterion can be defined as follows:

N(q) 1 i—1
ERR(r.q) = > >R (o) [(1 = Buao)):
i=1 j=1
y _
with R(y):%, y€{0,1,--- K} (8)

1 http://learningtorankchallenge.yahoo.com/index.php
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The continued product term is defined to be 1 when ¢ = 1. An intuitive
explanation of ERR is

N(q)
1
ERR(r,q) = Z ;P(user stops at position ¢ when ordered by r),
i=1

where higher values indicate better performance. The function R(y) maps the
ordinal rank y to a probability term that models whether the user would stop
at the associated document x. When y is large (highly relevant), R(y) is close
to 1; in contrast, when y is small (highly irrelevant), R(y) is close to 0.Top-
ranked (small ) documents are associated with a shorter product term, which
corresponds to the focus on the top-ranked documents.

As suggested by Chapelle et al (2009), ERR reflects users’ search behaviors
and can be used to quantify users’ satisfaction. The main difference between
ERR and other position-based metrics such as RBP (Moffat and Zobel 2008)
and NDCG (Jarvelin and Kekéldinen 2002) is that the discount term:

i—1

% [1(1 - Reoi))

=1

of ERR depends not only on the position information %, but also on whether
highly relevant instances appear before position 1.

Next, we derive an error bound on the ERR criterion. To simplify the
derivation, we work on a single query and remove the query index ¢ from the
notation. In addition, given that ERR depends only on the permutation 7
introduced by r, we denote ERR(r, q) by ERR(w). Then, we can permute the
index in (8) with 7 and get an equivalent definition of ERR as:

w(1)—1

ERR(n iﬂé R(y;) H( )))- 9)

=1 ]:

_

4.2 An Error Bound on ERR

Some related studies work on optimizing non-differentiable ranking metrics,
such as NDCG (Valizadegan et al 1999) and Average Precision (Yue and Finley
2007). Furthermore, the NDCG criterion is shown to be bounded by some
regression loss functions (Cossock and Zhang 2006) and a scaled error rate in
multi-class classification (Li et al 2007). Inspired by the two studies, we derive
a bound for ERR in order to find suitable costs for COCR. Note that Mohan
et al (2011) make a similar attempt with some different derivation steps and
shows that ERR is bounded by a scaled error rate in multi-class classification.
Our bound, on the other hand, will reveal that ERR is approximately bounded
by some costs in cost-sensitive ordinal classification.
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For any vector y of length N, any permutation 7: {1,2,--- ,N} — {1,2,--- ,N}
and its inverse permutation &, we define

F(i)—1
@y =r(30) I (1-2(360))).

The term Fj; represents the probability of a user stopping at position ¢ when
the documents are ordered by 7 while having ranks y. The definition simplifies
the ERR criterion (9) to

N

ERR(r) =Y _ Blr(i)] - Fi(m,y), (10)

i=1

where 3 is a vector with B[] = 1 and y is a vector with y[i] = y;.

Let § be a length-N vector with §[i] = r(x;). We now use the above
definitions to derive the upper-bound of the difference between ERR(w) and
the ERR of a perfect ranker.

Theorem 2 For a given set of examples {(x;, yi)}ivzl, consider a perfect or-
dering p such that y,;y is a non-increasing sequence. Then,

ERR(m) — ERR(p)
N 9 % N 2\ 2
Proof From the definition in Equation (10),

ERR(m)
N

=Y Blx(@)]- Fi(r,y)
i=1
N N
= Bl Fi(m.3) + Y Blx(i) - (Filmy) - Fi(m. ).
i=1 i=1
Note that 7 is the ordering constructed by y. Thus, the sequence F;(7,y) is

non-decreasing with B[m(¢)]. By the rearrangement inequality,

N

> B ()] Fi(m,¥)

=1

v

N
Zﬂ[ﬂ(i)] - Fi(m,¥). (11)

In addition, p is the ordering constructed by y. Thus, for all 4,

Fi(m,y) > Fi(p,y). (12)
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From (11) and (12),

ERR(m)
N N
> > Blo)] - Fim.3) + Y B()] - (Fp.y) - Bi(.9)).

i=1
Then, by the Cauchy-Schwarz inequality,

ERR(w) — ERR(p)

2 N 9 2
(Z(Fxp,y) -~ F(m.y)) ) :

i=1

4.3 Optimistic ERR Cost

Next, we use the bound in Theorem 2 to derive the costs for the ERR criterion.
In specific, we attempt to minimize the right-hand side of the bound with
respect to r. The term

S~ (Bloto] - Bl(0)])°

in the bound depends on the total ordering introduced by r and is difficult to
calculate in a point-wise manner by COCR. Thus, we minimize the term

Il
/\
.

j ( Qy[zm 1>
ﬁ( oy

Here (i) is used to denote m~1(4) and (i) is used to denote p~1(i). Assume
that we are optimistic and consider only “strong” rankers. That is, r(x;) ~ y;.

Qy[ll —1
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Then, the ordering 7 introduced by r will be close to the ordering p introduced
by the prefect ranker p. Thus,

p(i) (@)
2y[w(3) -1 QY[U(J)]
(-5 )= ("5,

Jj=1

If the ranker predicts r(x;) = k,

(Fio.y) - Eim9))’
-1

~ oyl 1 928 _ 1\ 7 2y[6(3)]
~ T -
j=1

x (2v — 28)?.

—~

Therefore, if we are optimistic about the performance of the rankers, the op-
timistic ERR (oERR) cost vector

cilk] = (2v — 28 (13)

can be used to minimize the bound in Theorem 2. In particular, when the
optimistic ERR cost is minimized, each

(Fio.y) - Eim3)

is approximately minimized and the right-hand side of the bound in Theo-
rem 2 is small. ERR(w) would then be close to the ideal ERR of the perfect
ranker. For K = 4, given an example (x,,,y,) with y, = 3, the squared cost
s (9,4,1,0,1) and the oERR cost is (49, 36, 16,0, 64). We see that, when nor-
malized by the largest component in the cost, the oERR vector penalizes for
mis-ranking errors more than the squared cost.

The optimistic assumption allows using a point-wise (cost-sensitive) crite-
rion to approximate a list-wise (ERR) one, and is arguably realistic only when
the rankers being considered are strong enough. Otherwise, the oERR cost
may not reflect the full picture of the ERR criterion of interest. Nevertheless,
as to be demonstrated in the experiments with real-world data sets, using the
approximation (0ERR) leads to better performance than not using the ap-
proximation (say, with the absolute cost only). In other words, the oERR, cost
captures some properties of the ERR criterion and can hence be an effective
choice when integrated within the COCR framework.

5 Experiments

We carry out several experiments to verify the following claims:
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For large-scale, list-wise ranking problems with ordinal ranks, with a same
base regression approach, the proposed COCR framework can outperform
a direct use of regression (Cossock and Zhang 2006).

The derived oERR cost in (13) can be coupled with COCR to boost the
quality of ranking in terms of the ERR criterion.

We first introduce the data sets and the base regression algorithms used

in our experiments. Furthermore, we will compare COCR with different costs
and discuss the results.

5.1 Data sets

Four benchmark, real-world, human labeled, and large-scale data sets are used
in our experiments. The statistics of the benchmark data sets are described
below.

— Yahoo! Learning To Rank Challenge Data Sets?:

In 2010, Yahoo! held the Learning to Rank Challenge for improving the
ranking quality in web-search systems. There were two data sets in the
competition: the larger set is used for track 1 and is named LTRC1 in our
experiments; the smaller set (LTRC2) is used for track 2. Both LTRC1
and LTRC2 are divided into three parts—training, validation, and test.
For training, validation, and test respectively,
— LTRC1 contains Q = 19,944/2,994/6,983 queries

and N = 473,134/71,083/165,660 examples
— LTRC2 contains @ = 1,266/1,266/3,798 queries

and N = 4,815/34,881/103,174 examples
In both data sets, the number of features D is 700 and all of the features
have been scaled to [0, 1]. The rank values y,, range from 0 to K = 4, where
0 means “irrelevant” and 4 means “highly relevant.”
Microsoft Learning to Rank Data Sets®:
The data sets were released by Microsoft Research in 2010. There are two
data sets MS10K and MS30K.

— MS10K contains @ = 10,000 queries and N = 1,200,192 examples.

— MS30K contains @ = 31,531 queries and N = 3,771,125 examples.
The MS10K data set is constructed by a random sampling of 10,000 queries
from MS30K. There are D = 136 features and we normalize the features to
[0, 1]. Each data set is divided into five standard parts for cross-validation.
The ordinal rank values in the data sets also range from 0 to 4.

5.2 Base Regression Algorithms

Three base regression algorithms are considered in our experiments, including
linear regression (Hastie et al 2003), M5’ decision tree (M5P; Wang and Witten

2 http://learningtorankchallenge.yahoo.com/datasets.php

3 http://research.microsoft.com/en-us/projects/mslr/default.aspx
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1997) to Gradient Boosted Regression Trees (GBRT; Friedman 2001). In the
experiments, we use WEKA (Hall et al 2009) for the linear regression and
M5P, and use RT-Rank (Mohan et al 2011) implementation for GBRT.

— Linear regression is arguably one of the most widely-used algorithm for
regression. It learns a simple linear model that combines the numerical
features in x to make the predictions. We take the standard least-squares
formulation of linear regression (Hastie et al 2003) as the baseline algorithm
in our experiments.

— MJ5P is a decision tree algorithm based on an earlier M5 (Quinlan 1992)
algorithm. M5P produces a regression tree such that each leaf node consists
of a linear model for combining the numerical features. M5P can perform
nonlinear regression with the partitions provided by the internal nodes
and is thus more powerful than linear regression. We will consider a single
MS5P tree as well as multiple M5P trees combined by the popular bootstrap
aggregation (bagging) method (Breiman 1996).

— GBRT aggregates multiple decision trees with gradient boosting to im-
prove the regression performance (Friedman 2001). The aggregation proce-
dure generates diverse decision trees by taking the regression errors (resid-
uals) into account, and can thus produce a more powerful regressor than
bagging-M5P. GBRT is a leading algorithm in the Yahoo! Learning to Rank
Challenge (Mohan et al 2011) and is thus taken into our comparisons.

In the following section, we conduct several comparisons using the above
mentioned base regression algorithms under the COCR framework with dif-
ferent costs.

5.3 Comparison Using Linear Regression

Table 1 shows the average test ERR of direct regression and three COCR set-
tings for the four data sets when using linear regression as the base algorithm.
Bold-faced numbers indicate that the COCR setting significantly outperforms
direct regression at the 95% confidence level using a two-tailed t-test. The
corresponding p-values are also listed in the table for reference. First, we see
that COCR with the squared cost is better than direct regression on all the
data sets. COCR with the absolute cost, which is similar to the McRank ap-
proach (Li et al 2007), can also achieve a higher ERR over direct regression on
some data sets. The results verify that it is important to respect the discrete
nature of the ordinal-valued y,, instead of directly treating them as real values
for regression. In particular, the reduction method within COCR takes the
discrete nature into account properly and should thus be preferred over direct
regression on the data sets with ordinal ranks.

Table 1 shows that COCR with the oERR cost is not only better than
direct regression, but can also further boost the ranking performance over the
absolute and the squared costs to reach the best ERR for all data sets, except
the smallest data set LTRC2. On larger data sets like MS10K and MS30K, the
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Table 1 ERR Comparison Using Linear Regression

data set direct COCR

regression  absolute, p-value squared, p-value oERR, p-value
LTRC1  0.4470 0.4484, 6.00 x 10~% 0.4490, 4.46 + 10~° 0.4505, 7.30 % 106
LTRC2  0.4440 0.4465, 6.00 x 10~*  0.4472, 2.00 x 104 0.4461, 2.84 x 102
MS10K  0.2643 0.2642, 1.13 % 107! 0.2697, 4.50 x 10720  0.2792, 2.24% 10735

MS30K  0.2748 0.2748, 5.76 + 10~} 0.2828, 4.76 + 10-116  0.2942, 2.18 + 10161

Table 2 NDCG@10 Comparison Using Linear Regression

data set direct COCR
regression  absolute, p-value squared, p-value oERR, p-value
LTRC1 0.7638 0.7652, 1.07«10~% 0.7652, 2.40+10"3  0.7636, 8.10 + 10!

LTRC2 0.7519 0.7552,1.19x107% 0.7562, 6.02+10°%  0.7518, 9.48 x 10!
MS10K  0.3916 0.3915, 6.04 x 107! 0.3945, 3.80 101! 0.3931, 1.16 x 10!
MS30K  0.4025 0.4026, 4.66 * 107! 0.4061, 2.88 x1074° 0.4060, 6.80 + 10~11

difference is especially large and significant. We further compare COCR, with
different costs to COCR with the oERR cost using a two-tailed t-test and list
the corresponding p-values in Table 3(a). The results show that COCR with
the oERR cost is definitely the best choice within the three COCR settings on
LTRC1, MS10K and MS30K. The results justify the usefulness of the proposed
oERR cost over the commonly-used absolute or square costs.

Another metric for list-wise ranking is normalized DCG (NDCG; Jérvelin
and Kekéldinen 2002). In order to verify if COCR can also enhance NDCG,
we list the NDCG@10 results in Table 2. Note that higher NDCG values
indicate better performance. For NDCG@10, COCR with the squared cost is
better than the direct regression on all data sets. In addition, COCR with
the squared cost is better than COCR, with the absolute cost on MS10K and
MS30K, and better than COCR, with the oERR cost on LTRC1 and LTRC2.
The findings suggest that COCR with the squared cost is the best of the three
settings. On the other hand, COCR with the oERR cost is weaker in terms
of the NDCG criterion. Thus, the flexibility of COCR in plugging in different
costs is important. More specifically, the flexibility allows us to obtain better
rankers toward the application needs (NDCG or ERR) by tuning the costs
appropriately.

The oERR cost is known to be equivalent to an NDCG-targeted cost de-
rived for discrete ordinal classification (Lin and Li 2012). The observation that
the oERR cost does not lead to the best NDCG performance for list-wise rank-
ing suggest an interesting future research direction to see if better costs for
NDCG can be derived.
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Table 3 Two-Tailed Test that Compare the oERR Cost to Other Costs

(a) Linear Regression

data set absolute squared

LTRC1 5.40%10°3 3.02 %102
LTRC2 6.24%107! 1.50 % 1071
MSI0K 3.70x10736 1.55%10"2!
MS30K 1.62x10160 70241081

(b) M5P

data set absolute squared

LTRC1 5.60%10~! 1.21%1071
LTRC2 2.06%x1075 3.24x10°1!
MS10K 1.62%10°2 9.12%10°8
MS30K 7.70%10"2 2.74%10°°
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Fig. 1 Effects of Tuning the Parameter M of M5P on LTRC1

5.4 Comparison Using M5P

The M5P decision tree comes with a parameter M, which stands for the min-
imum number of instances per leaf when constructing the tree. A smaller M
results in a more complex (possibly deeper) tree while a larger M results in
a simpler one. Figure 1 shows the results of tuning M when applying M5P in
direct regression and COCR with the oERR cost on the LTRC1 data set. The
M-values of 4, 256, 512, 1024, and 2048 are examined. The default value of M
in WEKA is 4.
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Table 4 ERR Results of Tuning the Parameter M of M5P on LTRC1

parameter M direct COCR
regression  absolute squared oERR
4 (validation) 0.4432%* 0.4381 0.4381 0.4393
256 (validation) 0.4365 0.4410 0.4425 0.4432
512 (validation) 0.4382 0.4426 0.4437 0.4438
1024 (validation) 0.4408 0.4445* 0.4453* 0.4453*
2048 (validation) 0.4400 0.4426 0.4431 0.4447
test by best validation 0.4499 0.4526 0.4521 0.4530
p-value 520%x1073% 2.10%x10"2 1.60%10°3

(* represents the best validation result)

Table 5 ERR Comparison Using M5P

data set direct COCR

regression  absolute, p-value squared, p-value oERR, p-value
LTRC1  0.4499 0.4526, 5.20%«10~3  0.4521,2.10%x10"2  0.4530, 1.60 % 103
LTRC2  0.4489 0.4499, 4.52 % 10~* 0.4533,1.40 x10°3  0.4538, 4.00 x 10~
MS10K  0.3014 0.3129, 6.22x 1013 0.3101, 6.08x10"%  0.3156, 6.76 x 1017
MS30K  0.3298 0.3438, 8.64 10754 0.3423, 8.46 +10~43  0.3451, 3.48°59

Figure 1(a) shows that direct regression with M5P can reach the best test
performance on the default value of M = 4. However, as shown in Figure 1(b),
COCR with the oERR cost can overfit when M = 4. Its training ERR is
considerably high, but the test ERR is extremely low. The findings suggest
a careful selection of the M parameter. We conduct a fair selection scheme
using the validation ERR. In particular, we check the models constructed by
M = 4, 256, 512, 1024, and 2048, pick the model that comes with the high-
est validation ERR, and report its corresponding test ERR.* The results for
LTRC1 are listed in Table 4. The first five rows show the validation results
of different algorithms, and the last row shows the test result when using the
best model in validation. The results demonstrate that when M is carefully se-
lected, all COCR settings significantly outperform direct regression on LTRC1
and COCR with the oERR achieves the best ERR of the three settings.

With the parameter selection scheme above, Table 5 lists the test ERR
on the four data sets. The results in the table further confirm that almost all
COCR settings are significantly better than direct regression on all data sets,
except COCR with the absolute cost on the smallest LTRC2. Furthermore,
COCR with oERR cost achieves the best ERR performance on all data sets.

4 We also check M = 2 but find that the parameter leads to worse performance for all
algorithms.
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Table 6 NDCG@10 Comparison Using M5P

data set  direct COCR
regression  absolute, p-value squared, p-value oERR, p-value

LTRC1  0.7680 0.7695, 1.80 x 10! 0.7698, 2.52 x 102 0.7698, 7.26 * 1072
LTRC2 0.7535 0.7519, 4.52 % 10~} 0.7565, 1.50 x 10~! 0.7567, 1.28 x 10!
MS10K  0.4233 0.4327,1.61%1071° 0.4295, 2621075 0.4284, 8.00+10~*
MS30K  0.4545 0.4645, 1.06 + 10733 0.4614, 1.36 + 10~17 0.4589, 2.40 + 10~ 7
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(a) Comparison under the Same Number- (b) Comparison under the Same Number-
of-rounds of-trees

Fig. 2 Effects of Number-of-rounds and Number-of-trees in Bagging-M5P

After comparing COCR with the oERR cost to COCR with other costs using
a two-tailed t-test, as shown in Table 3(b), we verify that the differences are
mostly significant, especially on MS30K and MS10K. The results again confirm
that the oERR cost is a competitive choice in the COCR settings.

Table 6 shows the test NDCG results. Both COCR with the squared and
the oERR costs perform better than direct regression on all data sets. In
addition, COCR with the absolute cost performs better than direct regression
on all data sets except the smallest LTRC2. The finding echoes the results in
Table 2 regarding the benefit of COCR on improving NDCG with a carefully
chosen cost.

5.5 Comparison Using Bagging-Mb5P
One concern about the comparison using M5P is that the COCR. framework

appears to be combining K decision trees while direct regression only uses a
single tree. To understand more about the effect on different number of trees,
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Table 7 ERR Comparison Using GBRT (LTRC1)

step size direct COCR

regression  absolute, p-value squared, p-value oERR, p-value
0.1 0.4590 0.4595, 3.48 * 10~1 0.4602, 2.84 x10~2 0.4603, 4.76 x 102
0.05 0.4576 0.4587, 5.64 % 1072 0.4596, 4.92x10~% 0.4602, 4.04 + 10~
0.02 0.4547 0.4566, 9.74+107° 0.4575,4.32x10"% 0.4583, 1.39% 106

Table 8 ERR Comparison Using GBRT (LTRC2)

step size  direct COCR

regression  absolute, p-value squared, p-value oERR, p-value
0.1 0.4563 0.4571, 452 1071 0.4579, 1.37*10~' 0.4597, 1.80 + 103
0.05 0.4584 0.4586, 7.44 %1071 0.4599, 7.94 %« 1072  0.4598, 1.06 * 10~*
0.02 0.4601 0.4603, 7.18 « 10~1  0.4599, 9.34 + 10~  0.4600, 9.50 * 10—+

we couple the bagging algorithm (Breiman 1996) with M5P. In particular, we
run 7 rounds of bagging. In each round, a bootstrapped 10% of the training
data set is used to obtain a M5P decision tree. After T rounds, the trees are
averaged to form the final prediction. Then, bagging-M5P for direct regression
generates T’ decision trees and bagging-M5P for COCR generates TK trees.
Figure 2(a) compares direct bagging-M5P to COCR-bagging-M5P with the
oERR cost under the same T'. That is, for the same horizontal value, the cor-
responding point on the COCR curve uses K times more trees than the point
on the direct regression curve. The figure shows that the whole performance
curve of COCR is always better than direct regression. On the other hand,
Figure 2(b) compares the two algorithms under the same total number of trees.
That is, COCR with T rounds of bagging-M5P is compared to direct regres-
sion with TK rounds of bagging-M5P. The figure suggests that COCR with
the oERR cost continues to perform better than direct regression. The results
demonstrate that COCR with the oERR cost is consistently a better choice
than direct regression using bagging-M5P, regardless of whether we compare
under the same number of bagging rounds or the same number of M5P trees.

5.6 Comparison Using GBRT

Next, we compare COCR, settings with direct regression using GBRT (Fried-
man 2001) as the base regression algorithm. We follow the award-winning
setting (Mohan et al 2011) for the parameters of GBRT—the number of it-
erations is set to 1000; the depth of every decision tree is set to 4; and the
step size of each GBRT iteration is set to either 0.1, 0.05, or 0.02. The set-
ting makes GBRT more time-consuming to train than bagging-M5P, M5P, or
linear regression, and thus we can only afford to conduct the experiments on
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the data sets LTRC1 and LTRC2. Table 7 and Table 8 show the ERR re-
sults on LTRC1 and LTRC2 respectively. In Table 7, COCR with any type of
costs performs significantly better than direct regression with GBRT in most
cases. In Table 8, when using a larger step size of 0.1 or 0.05, COCR with the
squared or the oERR costs performs significantly better than direct regression
with GBRT; COCR with the absolute cost is similar to direct regression with
GBRT. When using a smaller step size 0.02, however, all four algorithms in
Table 8 can reach similar ERR on the small data set. Because COCR with the
oERR cost setting always enjoys a similar or better performance than direct
regression or COCR with other costs, it can be a useful first-hand choice for
a sophisticated base regression algorithm like GBRT.

6 Conclusions

We propose a novel COCR, framework for ranking. The framework consists of
three main components: decomposing the ordinal ranks to binary classification
labels to respect the discrete nature of the ranks; allowing different costs to
express the desired ranking criterion; using mature regression tools to not
only deal with large-scale data sets, but also provide good estimates of the
expected rank. In addition to the sound theoretical guarantee of the proposed
COCR, a series of empirical results with different base regression algorithms
demonstrate the effectiveness of COCR. In particular, COCR with the squared
cost can usually do perform better than direct regression a commonly used
baseline on both the ERR criterion and the NDCG criterion.

Furthermore, we prove an upper bound of the ERR criterion and derive the
optimistic ERR cost from the bound. Experimental results suggest that COCR
with the optimistic ERR cost not only outperforms direct regression but often
also obtains better ERR than COCR with the absolute or the squared costs.
Possible future directions includes coupling the proposed COCR framework
with other well-known regression algorithms, deriving costs that correspond to
other relevant pair-wise or list-wise ranking criteria, and studying the potential
of the proposed framework for ensemble learning.
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