
JMLR: Workshop and Conference Proceedings –:1–17, 2014 ACML 2014

Reduction from Cost-sensitive Multiclass Classification to
One-versus-one Binary Classification

Hsuan-Tien Lin htlin@csie.ntu.edu.tw

Department of Computer Science and Information Engineering, National Taiwan University

Abstract
Many real-world applications require varying costs for different types of mis-classification
errors. Such a cost-sensitive classification setup can be very different from the regular
classification one, especially in the multiclass case. Thus, traditional meta-algorithms for
regular multiclass classification, such as the popular one-versus-one approach, may not
always work well under the cost-sensitive classification setup. In this paper, we extend
the one-versus-one approach to the field of cost-sensitive classification. The extension is
derived using a rigorous mathematical tool called the cost-transformation technique, and
takes the original one-versus-one as a special case. Experimental results demonstrate that
the proposed approach can achieve better performance in many cost-sensitive classification
scenarios when compared with the original one-versus-one as well as existing cost-sensitive
classification algorithms.

Keywords: cost-sensitive classification, one-versus-one, meta-learning

1. Introduction

Many real-world applications of machine learning and data mining require evaluating the
learned system with different costs for different types of mis-classification errors. For in-
stance, a false-negative prediction for a spam classification system only takes the user an
extra second to delete the email, while a false-positive prediction can mean a huge loss
when the email actually carries important information. When recommending movies to a
subscriber with preference “romance over action over horror”, the cost of mis-predicting a
romance movie as a horror one should be significantly higher than the cost of mis-predicting
the movie as an action one. Such a need is also shared by applications like targeted mar-
keting, information retrieval, medical decision making, object recognition and intrusion
detection (Abe et al., 2004), and can be formalized as the cost-sensitive classification setup.
In fact, cost-sensitive classification can be used to express any finite-choice and bounded-loss
supervised learning setups (Beygelzimer et al., 2005). Thus, it has been attracting much
research attention in recent years (Domingos, 1999; Margineantu, 2001; Abe et al., 2004;
Beygelzimer et al., 2005; Langford and Beygelzimer, 2005; Beygelzimer et al., 2007).

Abe et al. (2004) grouped existing research on cost-sensitive classification into three
categories: making a particular classifier cost-sensitive, making the prediction procedure
cost-sensitive, and making the training procedure cost-sensitive. The third category con-
tains mostly meta-algorithms that reweight training examples before feeding them into the
underlying learning algorithm. Such a meta-algorithm can be used to make any existing
algorithm cost-sensitive. While a promising meta-algorithm exists and is well-understood
for cost-sensitive binary classification (Zadrozny et al., 2003), the counterpart for multiclass

c© 2014 H.-T. Lin.

Lin

classification remains an ongoing research issue (Abe et al., 2004; Langford and Beygelzimer,
2005; Zhou and Liu, 2006).

In this paper, we propose a general meta-algorithm that reduces cost-sensitive multiclass
classification tasks to regular classification ones. The meta-algorithm is based on the cost-
transformation technique, which converts one cost to another by not only reweighting the
original training examples, but also relabeling them. We show that any cost can be trans-
formed to the regular mis-classification one with the cost-transformation technique. As a
consequence, general cost-sensitive classification and general regular classification tasks are
equivalent in terms of hardness.

We further couple the meta-algorithm with another popular meta-algorithm in regu-
lar classification—the one-versus-one (OVO) decomposition from multiclass to binary. The
resulting algorithm, which is called cost-sensitive one-versus-one (CSOVO), can perform
cost-sensitive multiclass classification with any base binary classifier. Interestingly, CSOVO
is algorithmically similar to an existing meta-algorithm for cost-sensitive classification:
weighted all-pairs (WAP; Beygelzimer et al., 2005). Nevertheless, CSOVO is somewhat
simpler to implement than WAP. Our experimental results on real-world data sets demon-
strate that CSOVO shares a similar (and sometimes even better) performance over WAP,
while both of them can be significantly better than OVO. Therefore, CSOVO is a prefer-
able OVO-type cost-sensitive classification algorithm. Moreover, when compared with other
meta-algorithms that reduce cost-sensitive classification to binary classification—namely,
error-correcting output code (Langford and Beygelzimer, 2005), tree (Beygelzimer et al.,
2005), filter tree and all-pair filter tree (Beygelzimer et al., 2007) decompositions—we see
that CSOVO can often achieve the best test performance. Those results further validate
the usefulness of CSOVO.

The paper is organized as follows. In Section 2, we formalize the cost-sensitive clas-
sification setup. Then, we present the cost-transformation technique with its theoretical
implications in Section 3, and derive our proposed CSOVO algorithm in Section 4. Fi-
nally, we compare CSOVO with other algorithms empirically in Section 5 and conclude in
Section 6.

2. Problem Setup

We start by defining the setup that will be used in this paper.

Definition 1 (weighted classification) Assume that there is an unknown distribution Dw

on X × Y × R+. where the input space X ⊆ RD and the label space Y = {1, 2, · · · ,K}.
A weighted example is a tuple (x, y, w) ∈ X × Y × R+, where the non-negative numbers
w ∈ R+ are called the weights. In the weighted classification setup, we are given a set of
i.i.d. weighted training examples Sw = {(xn, yn, wn)}Nn=1 ∼ DN

w . Use

E(g,D) ≡ E
(x,y,w)∼D

(
w · Jy 6= g(x)K

)
to denote the expected weighted classification error of any classifier g : X → Y with respect to
some distribution D. The goal of the weighted classification is to use Sw to find a classifier ĝ
such that E(ĝ,Dw) is small.

For K = 2, the setup is called (weighted) binary classification; for K > 2, the setup is
called (weighted) multiclass classification. When the weights are constants (say, 1), weighted

2

Reduction from Cost-sensitie Multiclass Classification to Binary

classification becomes a special case called regular classification, which has been widely and
deeply studied for years (Beygelzimer et al., 2005). In general, weighted classification can be
easily reduced to regular classification for both binary and multiclass cases using the famous
COSTING reduction (Zadrozny et al., 2003). In addition, many of the existing regular
classification algorithms can be easily extended to perform weighted classification. Thus,
there are plenty of useful theoretical and algorithmic tools for both weighted classification
and regular classification (Beygelzimer et al., 2005).

The main setup that we will study in this paper is cost-sensitive classification, which is
more general than weighted classification.

Definition 2 (cost-sensitive classification) Assume that there is an unknown distribu-
tion Dc on X × Y × RK . A cost-sensitive example is a tuple (x, y, c) ∈ X × Y × RK ,
where c[k] denotes the cost to be paid when x is predicted as category k. In the cost-
sensitive classification setup, we are given a set of i.i.d. cost-sensitive training examples
Sc = {(xn, yn, cn)}Nn=1 ∼ DN

c . We shall reuse

E(g,D) ≡ E
(x,y,c)∼D

c[g(x)] .

to denote the expected cost of any classifier g : X → Y with respect to some distribu-
tion D. The goal of the cost-sensitive classification is to use Sc to find a classifier ĝ such
that E(ĝ,Dc) is small.

We make two remarks here. First, when looking at the definition of E, we see that
the label y is actually not needed in evaluating the classifier g. We keep the label there to
better illustrate the connection between cost-sensitive and regular/weighted classification.
Naturally, we assume that Dc would only generate examples (x, y, c) such that c[y] = cmin =
min1≤`≤K c[`].

Secondly, let us define the classification cost vector c
(`)
c [k] ≡ J` 6= kK. We see that

weighted classification is a special case of cost-sensitive classification using c = w · c(y)
c

as the cost vector of (x, y, w), and regular classification is a special case of cost-sensitive

classification using c = c
(y)
c as the cost vector.

While both regular and weighted classification have been widely studied, cost-sensitive
classification is theoretically well-understood only in the binary case (Zadrozny et al., 2003),
in which weighted classification and cost-sensitive classification simply coincide. Next,
we will introduce the cost-transformation technique, which allows us to tightly connect
cost-sensitive classification with regular/weighted classification, and helps understand cost-
sensitive classification better in the multiclass case.

3. Cost Transformation

Cost-transformation is a tool that connects a cost vector to other cost vectors. In particular,

we hope to link any cost vector c with the classification cost vectors Cc =
{

c
(`)
c

}K

`=1
,

because the link allows us to reduce cost-sensitive classification (which deals with c) to
regular classification (which deals with Cc). We start introducing the cost-transformation
technique by making two definitions about the relations between cost vectors. The first
definition relates two cost vectors c̃ and c.

3

Lin

Definition 3 (similar cost vectors) A cost vector c̃ is similar to c by ∆ if and only if
c̃[·] = c[·] + ∆ with some constant ∆.

For instance, (4, 3, 2, 3) is similar to (2, 1, 0, 1) by 2. We shall omit the “by ∆” part
when it is clear from the context. Note that when c̃ is similar to c, using c̃ for evaluating
a prediction g(x) is equivalent to using c plus a constant cost of ∆. The constant shifting
from c to c̃ does not change the relative cost difference between the prediction g(x) and the
best prediction y.

Next, we relate a cost vector c to a set of cost vectors Cb.

Definition 4 (decomposable cost vectors) A cost vector c is decomposable to a set of base

cost vectors Cb =
{

c
(t)
b

}T

t=1
if and only if there exists non-negative coefficients q[t] such

that c[·] =
∑T

t=1 q[t] · c(t)
b [·].

That is, a cost vector c is decomposable to Cb if we can split c to a conic combination of

the base cost vectors c
(t)
b . Why is such a decomposition useful? Let us take a cost-sensitive

example (x, y, c) and choose the classification cost Cc as Cb. If c is decomposable to Cc,
then for any classifier g,

c[g(x)] =
K∑
`=1

q[`] · c(`)
c [g(x)] =

K∑
`=1

q[`] · J` 6= g(x)K .

That is, if we randomly generate ` proportional to q[`] and relabel the cost-sensitive exam-
ple (x, y, c) to a regular one (x, `, w = 1), then the cost that any classifier g needs to pay for
its prediction on x is proportional to the expected classification error, where the expectation
is taken with respect to the relabeling process. Thus, if a classifier g performs well for the
“relabeled” (regular classification) task, it would also perform well for the original cost-
sensitive classification task. The non-negativity of q[`] ensures that q can be normalized to
form a probability distribution.1

Definition 4 is a key of the cost-transformation technique. It not only allows us to trans-

form one cost vector c to an equivalent representation
{

(q[t] , c
(t)
b)
}

for some general Cb,

but more specifically also lets us relabel a cost-sensitive example (x, y, c) to another (ran-
domized) regular example (x, `, 1). However, is every cost vector c decomposable to the
classification cost Cc? The short answer is no. For instance, the cost vector c = (6, 3, 0, 3)
is not decomposable to Cc, because c yields a unique linear decomposition of Cc with some

negative coefficients: c = −2 · c(1)
c + 1 · c(2)

c + 4 · c(3)
c + 1 · c(4)

c .
Although the cost vector (6, 3, 0, 3) itself is not decomposable to Cc, we can easily

see that its similar cost vector, (12, 9, 6, 9), is decomposable to Cc. In fact, for any cost
vector c, there is an infinite number of its similar cost vectors c̃ that are decomposable to
Cc, as formalized below.

Theorem 5 (decomposition via a similar vector) Consider any cost vector c. As-
sume that c̃ is similar to c by ∆. Then, c̃ is decomposable to Cc if and only if

∆ ≥ (K−1) cmax −
K∑
k=1

c[k] ,

1. We take a minor assumption that not all q[`] are zero. Otherwise c = 0 and the example (x, y, c) can
be simply discarded.

4

Reduction from Cost-sensitie Multiclass Classification to Binary

where cmax = max
1≤`≤K

c[`].

The proof is based on the fact that Cc is linearly independent while spanning RK ,
and the constant cost vector (∆,∆, · · · ,∆) with a positive ∆ is decomposable to Cc with
q[`] = ∆

K−1 .
From Theorem 5, there are infinitely many cost vectors c̃ that we can use. The next

question is, which is more preferable? Recall that with a given q̃, the relabeling probability

distribution is p̃[`] = q̃[`]
/∑K

k=1 q̃[k] . To reduce the variance with respect to the relabeling

process, one possibility is to require the discrete probability distribution p̃[·] to be of the
least entropy. That is, we want to solve the following optimization problem.

min
p̃,q̃,∆

K∑
`=1

p̃[`] log
1

p̃[`]
, (1)

subject to c[·] =
K∑
`=1

q̃[`] · c(`)
c [·]−∆, p̃[·] = q̃[·]

/
K∑
k=1

q̃[k] ;

∆ ≥ (K−1) cmax −
K∑
k=1

c[k] .

Theorem 6 (decomposition with minimum-entropy) If not all c[`] are equal, the
unique optimal solution to (1) is

q̃[`] = cmax − c[`] , (2)

∆ = (K−1) cmax −
K∑
k=1

c[k] . (3)

The proof is listed in Appendix A. Note that the resulting ∆ is the smallest one that makes
c̃ decomposable to Cc. Using Theorem 6, we can then define the following distribution
Dr(x, `, w) from Dc(x, y, c).

Dr(x, `, w) = Jw = 1K · Λ−1
1 ·

∫
y,c

q̃[`] · Dc(x, y, c),

where q̃[`] is computed from c using (2) and

Λ1 =

∫
x,y,c

K∑
`=1

q̃[`] · Dc(x, y, c).

is a normalization constant.2 Then, we can derive the following theorem.

Theorem 7 (cost-transformation) For any classifier g,

E(g,Dc) = Λ1 · E(g,Dr)− Λ2 ,

where Λ2 is a constant that can be computed by integrating over the ∆ term associated with
each c ∼ Dc from (3).

2. Even when all c[`] are equal, equation (2) can still be used to get q̃[`] = 0 for all `, which means the
example (x, y, c) can be dropped instead of relabeled.

5

Lin

Theorem 7 can then be used to further prove the following regret equivalence theorem.

Theorem 8 (regret equivalence) Consider Dc and its associated Dr. If g∗ is the optimal
classifier under Dc, and g̃∗ is the optimal classifier under the associated Dr. Then, for any
classifier g,

E(g,Dc)− E(g∗,Dc) = Λ1 ·
(
E(g,Dr)− E(g̃∗,Dr)

)
.

That is, if a regular classification algorithm Ar can return some ĝ that is close to g̃∗
under Dr, the very same ĝ would be close to the optimal classifier g∗ for the original cost-
sensitive classification task.

Theoretically, Theorem 8 indicates an equivalence in terms of hardness between general
cost-sensitive classification tasks and general regular classification tasks. Then, we can
reduce cost-sensitive classification to (weighted) regular classification using Algorithm 1,
called training set expansion and weighting (TSEW). The algorithm carries the information
in q̃[`] as weights of multi-labelled examples.

Algorithm 1: Training Set Expansion and Weighting

1. Obtain NK training examples Sw = {(xn`, yn`, wn`)}:

(a) Transform each (xn, yn, cn) to (xn, q̃n) by (2).

(b) For every `, let (xn`, yn`, wn`) = (xn, `, q̃n[`])

(c) Add (xn`, yn`, wn`) to Sw.

2. Use a weighted classification algorithm Aw on Sw to obtain a classifier ĝw.

3. Return ĝ ≡ ĝw.

The TSEW algorithm is a good representative of our proposed cost-transformation tech-
nique. Note that TSEW is actually the same as the data space expansion (DSE) algorithm
proposed by Abe et al. (2004). Nevertheless, our derivation from the minimum entropy
perspective is novel, and our theoretical results on the out-of-sample cost E(g,Dc) are more
general than the in-sample cost analysis by Abe et al. (2004). Xia et al. (2007) also pro-
posed an algorithm similar to TSEW using LogitBoost as Aw based on a restricted version
of Theorem 7. It should be noted that the results discussed in this section are partially
influenced by the work of Abe et al. (2004) but are independent from the work of Xia et al.
(2007).

From the experimental results in literature, a direct use of TSEW (DSE) does not
perform well in practice (Abe et al., 2004). A possible explanation is that although Sw
carries multi-labeling ambiguities. That is, the same input vector xn can come with many
different labels (with possibly different weights) in Sw. Thus, common Aw can find Sw too
difficult to digest (Xia et al., 2007). One could improve the basic TSEW algorithm by using
(or designing) an Aw that is robust with multi-labeled training feature vectors. We shall
present one such algorithm in the next section.

6

Reduction from Cost-sensitie Multiclass Classification to Binary

4. Cost-Sensitive One-Versus-One

In this section, we propose a novel cost-sensitive classification algorithms by coupling the
cost-transformation technique with the popular and robust one-versus-one (OVO) algorithm
for regular classification. Before we get into our proposed cost-sensitive one-versus-one
(CSOVO) algorithm, we shall introduce the original OVO first.

4.1. Original One-versus-one

We shall present a weighted version of OVO here. As shown in Algorithm 2, OVO decom-

poses the multiclass classification task into K(K−1)
2 binary classification subtasks. Because

of the O(K2) growth in the number of subtasks, OVO is usually more suited when K is not
too large (Hsu and Lin, 2002).

Algorithm 2: One-versus-one (Hsu and Lin, 2002)

1. For each i, j that 1 ≤ i < j ≤ K,

(a) Take the original Sw = {(xn, yn, wn)}Nn=1 and construct a binary training set

S(i,j)
b = {(xn, yn, wn) : yn = i or j}.

(b) Use a weighted binary classification algorithm Ab on S(i,j)
b to get a binary clas-

sifier ĝ
(i,j)
b .

2. Return ĝ(x) = argmax
1≤`≤K

∑
i<j

r
ĝ

(i,j)
b (x) = `

z
.

In short, each binary classification subtask consists of comparing examples from two

categories only. That is, each ĝ
(i,j)
b (x) intends to predict whether x “prefers” category i or

category j, and ĝ predicts with the preference votes gathered from those ĝ
(i,j)
b . The goal

of Ab is to locate binary classifiers ĝ
(i,j)
b with a small E

(
ĝ

(i,j)
b ,D(i,j)

OVO

)
, where

D(i,j)
OVO

(
x, y, u

)
=

r
u = Jy = i or jK

z∫
w
Dr

(
x, y, w

)
.

In particular, it has been proved (Beygelzimer et al., 2005) that

E(ĝ,Dr) ≤ 2
∑
i<j

E
(
ĝ

(i,j)
b ,D(i,j)

OVO

)
.

That is, if E
(
ĝ

(i,j)
b ,D(i,j)

OVO

)
are all small, then E(ĝ,Dr) should also be small.

4.2. Cost-sensitive One-versus-one

By coupling OVO with the cost-transformation technique (TSEW in Algorithm 1), we can
easily get a preliminary version of CSOVO in Algorithm 3.

7

Lin

Algorithm 3: TSEW-OVO

1. For each i, j that 1 ≤ i < j ≤ K,

(a) Transform each cost-sensitive example (xn, yn, cn) to (xn, q̃n) by (2).

(b) Use all the (xn, q̃n) to construct a binary classification training set

S(i,j)
b =

{(
xn, i, w

(i)
n

)}
∪
{(

xn, j, w
(j)
n

)}
,

where w
(`)
n = q̃n[`].

(c) Use a weighted binary classification algorithm Ab on S(i,j)
b to get a binary clas-

sifier ĝ
(i,j)
b .

2. Return ĝ(x) = argmax
1≤`≤K

∑
i<j

r
ĝ

(i,j)
b (x) = `

z
.

One thing to notice in Algorithm 3 is that each training example (xn, yn) may be split

to two examples
(
xn, i, w

(i)
n

)
and

(
xn, j, w

(j)
n

)
for each S(i,j)

b . That is, the example is

ambiguously presented for each binary classification subtask. We can take a simple trick to
eliminate the ambiguity before training. In particular, we keep only the label (say, i) that

comes with a larger weight, and adjust its weight to
∣∣∣w(i)

n − w
(j)
n

∣∣∣. The trick follows from

the same principle as shifting the cost vectors to a similar one. Then, we can eliminate one
unnecessary example and remove the multi-labeling ambiguity in the binary classification
subtask.

Recall that (xn, i, w
(i)
n) would be of weight w

(i)
n = q̃n[i] and (xn, j, w

(j)
n) would be of

weight w
(j)
n = q̃n[j]. By the discussion above, the simplified S(i,j)

b is{(
xn, argmax

`=i or j
q̃n[`] ,

∣∣∣q̃n[i]− q̃n[j]
∣∣∣)}

=

{(
xn, argmin

`=i or j
cn[`] ,

∣∣∣cn[i]− cn[j]
∣∣∣)} . (4)

Then, we get our proposed CSOVO algorithm.

An intuitive explanation is that CSOVO asks each binary classifier ĝ
(i,j)
b to answer the

question “is c[i] or c[j] smaller for this x?” We can easily see that CSOVO (Algorithm 4)
takes OVO (Algorithm 2) as a special case when using only the weighted classification cost

vectors (w · c(`)
c).

4.3. Theoretical Guarantee

Next, we analyze the theoretical guarantee of Algorithm 4. Note that each created example(
xn, argmin

`=i or j
cn[`] ,

∣∣∣cn[i]− cn[j]
∣∣∣)

8

Reduction from Cost-sensitie Multiclass Classification to Binary

Algorithm 4: Cost-sensitive One-versus-one

1. For each i, j that 1 ≤ i < j ≤ K,

(a) Take the original Sc = {(xn, yn, cn)}Nn=1 and construct S(i,j)
b by (4).

(b) Use a weighted binary classification algorithm Ab on S(i,j)
b to get a binary clas-

sifier ĝ
(i,j)
b .

2. Return ĝ(x) = argmax
1≤`≤K

∑
i<j

r
ĝ

(i,j)
b (x) = `

z
.

can be thought as if coming from a distribution

D(i,j)
CSOVO (x, k, u)

=

∫
y,c

r
k=argmin

`=i or j
c[`]

zr
u=
∣∣∣c[i]− c[j]

∣∣∣zDc (x, y, c) .

We then get the following theorem:

Theorem 9 Consider any family of binary classifiers{
g

(i,j)
b : X → {i, j}

}
1≤i<j≤K

.

Let g(x) = argmax
1≤`≤K

∑
i<j

r
g

(i,j)
b (x) = `

z
. Then,

E(g,Dc)− E
(x,y,c)∼Dc

cmin ≤ 2
∑
i<j

E
(
g

(i,j)
b ,D(i,j)

CSOVO

)
. (5)

Proof For each (x, y, c) generated from Dc, if c[g(x)] = c[y] = cmin, its contribution on
the left-hand side is 0, which is trivially less than its contribution on the right-hand side.

Without loss of generality (by sorting the elements of the cost vector c and shuffling the
labels y ∈ Y), consider an example (x, y, c) such that

cmin = c[1] ≤ c[2] ≤ . . . ≤ c[K] = cmax.

From the results of Beygelzimer et al. (2005), suppose g(x) = k, then for each 1 ≤ ` ≤ k−1,
there are at least dk/2e pairs (i, j), where i ≤ k < j, and

g
(i,j)
b (x) 6= argmin

`=i or j
cn[`] .

Therefore, the contribution of (x, y, c) on the right-hand side is no less than

k−1∑
`=1

(c[` + 1]− c[`])
⌈
`
/

2
⌉
≥ 1

2

k−1∑
`=1

` (c[` + 1]− c[`])

=
1

2

k−1∑
`=1

(c[k]− c[`])

≥ 1

2
(c[k]− cmin) ,

9

Lin

and the left-hand-side contribution is (c[k]− cmin). The desired result can be proved by
integrating over all Dc.

Thus, similar to the original OVO algorithm, if E
(
ĝ

(i,j)
b ,D(i,j)

CSOVO

)
are all small, then the

resulting E(ĝ,Dc) should also be small.

4.4. A Sibling Algorithm: Weighted All-pairs

Note that a similar theoretical proof of Theorem 9 was made by Beygelzimer et al. (2005) to
analyze another algorithm called weighted all-pairs (WAP). As illustrated in Algorithm 5,
the WAP algorithm shares many similar algorithmic structures with CSOVO. In particular,
we see that except the difference between equations (4) and (6), WAP is exactly the same
as CSOVO.

Algorithm 5: A Special Version of WAP (Beygelzimer et al., 2005)
Run CSOVO, while replacing (4) in step 1(a) with

S(i,j)
b =

{(
xn, argmin

`=i or j
cn[`] ,

∣∣∣vn[i]− vn[j]
∣∣∣)} (6)

where vn[i] =

∫ cn[i]

cmin

1

|{k : cn[k] ≤ t}|
dt

Define

D(i,j)
WAP (x, k, u)

=

∫
y,c

r
k=argmin

`=i or j
c[`]

zr
u=
∣∣∣v[i]− v[j]

∣∣∣zDc (x, y, c) ,

where v is computed from c using a similar definition as the one in Algorithm 5. The cost
bound of WAP is then (Beygelzimer et al., 2005)

E(g,Dc)− E
(x,y,c)∼Dc

cmin ≤ 2
∑
i<j

E
(
g

(i,j)
b ,D(i,j)

WAP

)
. (7)

Note that we can let v′n[i] ≡ cn[i] − cmin =
∫ cn[i]
cmin

(1) dt. Then, CSOVO equivalently uses∣∣∣v′n[i] − v′n[j]
∣∣∣ as the underlying example weight. It is not hard to see that for any given

example (x, y, c), the associated∣∣∣v′n[i]− v′n[j]
∣∣∣ ≥ ∣∣∣vn[i]− vn[j]

∣∣∣.
Thus, the WAP cost bound (7) is tighter than the CSOVO one (5) when using the same

binary classifiers
{
ĝ

(i,j)
b

}
. In particular, while the right-hand-side of (5) and (7) look similar,

the total weight that CSOVO takes in D(i,j)
CSOVO is larger than the total weight that WAP

takes in D(i,j)
WAP . The difference allows WAP to have an O(K) regret transform (Beygelzimer

10

Reduction from Cost-sensitie Multiclass Classification to Binary

et al., 2005) instead of the O(K2) one of CSOVO (Theorem 9). Thus, for binary classifiers{
ĝ

(i,j)
b

}
with the same error rate, it appears that WAP is better than CSOVO because of the

tighter upper bound. However, CSOVO enjoys the advantage of efficiency and simplicity in
implementation, because equation (6) would require a complete sorting of each cost vector
(of size K) to compute while (4) only needs a simple subtraction. In the next section, we
shall study whether the tighter cost bound with the additional complexity (WAP) leads to
better empirical performance than the other way around (CSOVO).

4.5. Another Sibling Algorithm: All-pair Filter Tree

Another sibling algorithm of CSOVO is called the all-pair filter tree (APFT; Beygelzimer
et al., 2007). APFT designs a elimination-based tournament in order to find the label with
the lowest cost. During training, if an example (xn, yn) as well as the classifiers in the lower
levels of the tree allow labels {i, j} to meet in one game of the tournament, a weighted
example (

xn, argmin
`=i or j

cn[`] ,
∣∣∣cn[i]− cn[j]

∣∣∣)

is added to the training set S(i,j)
b for learning a classifier ĝ

(i,j)
b . The goal of ĝ

(i,j)
b is to achieve

a small E
(
ĝ

(i,j)
b ,D(i,j)

APFT

)
, where

D(i,j)
APFT (x, k, u)

=

∫
y,c

r
i, j attends the tournament

zr
k=argmin

`=i or j
c[`]

zr
u=
∣∣∣c[i]− c[j]

∣∣∣zDc (x, y, c) .

Note that the condition
r
i, j attends the tournament

z
depends on lower-level classifiers

that “filter” the distribution for higher-level training. During prediction, the results from{
ĝ

(i,j)
b

}
are decoded using the same tournament design rather than voting.

Let
{
g

(i,j)
b

}
be a set of binary classifiers and gAPFT be the resulting classifier after decoding

the predictions of
{
g

(i,j)
b

}
from the tournament. It can be shown (Beygelzimer et al., 2007)

that

E(gAPFT,Dc)− E
(x,y,c)∼Dc

cmin ≤
∑
i<j

E
(
g

(i,j)
b ,D(i,j)

APFT

)
. (8)

Comparing CSOVO with APFT, we see one similarity: the weighted examples included in

each S(i,j)
b . Nevertheless, note that APFT uses fewer examples than CSOVO—the former

uses only pairs of labels that are met in the tournament and the latter uses all possible pairs
of labels. The difference allows for a tighter error bound for APFT by conditioning on the
tournament results. Thus, when using binary classifiers of the same error rate, it appears
that APFT is better than CSOVO because of the tighter upper bound. Furthermore, by
restricting to a specific tournament, APFT results in an O(K) predicting scheme instead
of the O(K2) one that CSOVO needs to take. Nevertheless, APFT essentially breaks the
symmetry between classes by restricting to a specific tournament, and the reduced number

11

Lin

of examples in each S(i,j)
b could degrade the practical learning performance. In the next

section, we shall also study whether the tighter cost bound with the tournament restriction
(APFT) leads to better empirical performance than the other way around (CSOVO).

5. Experiments

We will first compare CSOVO with the original OVO on various real-world data sets. Then,
we will compare CSOVO with WAP (Beygelzimer et al., 2005) and APFT (Beygelzimer
et al., 2007). All four algorithms are of OVO-type. That is, they obtain a multiclass

classifier ĝ by calling a weighted binary classification algorithm Ab for K(K−1)
2 times. During

prediction, CSOVO, OVO and WAP requires gathering votes from K(K−1)
2 binary classifiers,

while APFT determines the label by using K − 1 of those classifiers in the tournament. In
addition, we will compare CSOVO with other existing algorithms that also reduce cost-
sensitive classification to weighted binary classification.

We take the support vector machine (SVM) with the perceptron kernel (Lin and Li,
2008) as Ab in all the experiments and use LIBSVM (Chang and Lin, 2001) as our SVM
solver. Note that SVM with the perceptron kernel is known as a strong classification
algorithm (Lin and Li, 2008) and can be naturally adopted to perform weighted binary
classification (Zadrozny et al., 2003).

We use ten classification data sets: zoo, glass, vehicle, vowel, yeast, segment, dna, page-
block, satimage, usps.3 The first nine come from the UCI machine learning repository (Het-
tich et al., 1998) and the last one is from Hull (1994).

Note that the ten data sets were originally gathered as regular classification tasks. We
shall first adopt the randomized proportional (RP) cost-generation procedure that was
used by Beygelzimer et al. (2005). In particular, we generate the cost vectors from a cost
matrix C(y, k) that does not depends on x. The diagonal entries C(y, y) are set as 0 and each

of the other entries C(y, k) is a random variable sampled uniformly from
[
0, 2000 |{n : yn=k}|

|{n : yn=y}|

]
.

Then, for a cost-sensitive example (x, y, c), we simply take c[k] = C(y, k). We acknowledge
that the RP procedure may not fully reflect realistic application needs. Nevertheless, we
still take the procedure as it is a longstanding benchmark for comparing general-purpose
cost-sensitive classification algorithms.

We randomly choose 75% of the examples in each data set for training and leave the
other 25% of the examples as the test set. Then, each feature in the training set is linearly
scaled to [−1, 1], and the feature in the test set is scaled accordingly. The results reported
are all averaged over 20 trials of different training/test splits, along with the standard error.
In the coming tables, those entries within one standard error of the lowest one are marked
in bold.

SVM with the perceptron kernel takes a regularization parameter (Lin and Li, 2008),
which is chosen within

{
2−17, 2−15, . . . , 23

}
with a 5-fold cross-validation (CV) procedure on

only the training set (Hsu et al., 2003). For the OVO algorithm, the CV procedure selects
the parameter that results in the smallest cross-validation classification error. For CSOVO
and other cost-sensitive classification algorithms, the CV procedure selects the parameter
that results in the smallest cross-validation cost. We then re-run each algorithm on the

3. All data sets except zoo, glass, yeast and pageblock are actually downloaded from http://www.csie.

ntu.edu.tw/~cjlin/libsvmtools/datasets

12

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Reduction from Cost-sensitie Multiclass Classification to Binary

Table 1: test cost of CSOVO/OVO

data set CSOVO OVO
zoo 36.79±9.09 105.56±33.45
glass 210.06±15.88 492.99±40.77
vehicle 155.14±20.63 185.38±17.23
vowel 20.05±1.95 11.90±1.96
yeast 52.45±2.97 5823.21±1290.65

segment 25.27±2.25 25.15±2.11
dna 53.18±4.25 48.15±3.33

pageblock 24.98±4.94 501.57±74.98
satimage 66.57±4.77 94.07±5.49
usps 20.51±1.17 23.62±0.66

whole training set with the chosen parameter to get the classifier ĝ. Finally, we evaluate
the average performance of ĝ with the test set.

5.1. CSOVO versus OVO

Table 1 compares the test cost of CSOVO and the original cost-insensitive OVO. We can
see that on 7 out of the 10 data sets, CSOVO is significantly better than OVO, which
justifies that it can be useful to include the cost information into the training process. The
t-test results, which will be shown in Table 4, suggest the same finding. The big difference
on yeast and pageblock is because they are highly unbalanced and hence the components
in c can be huge. Then, not using (or discarding) cost information (as OVO does) would
intuitively lead to worse performance.

The only data set on which CSOVO is much worse than OVO is vowel. One may wonder
why including the accurate cost information does not improve performance. We check and
find that OVO achieves a very low test error (1.1%), which readily leads to a low test cost.
Then the caveat of using CSOVO, or more generally the cost-transformation technique,
arises. In particular, cost transformation reduces the original “easy” task for OVO to a
more difficult one. The change in hardness degrades the learning performance, and thus
CSOVO results in relatively higher test cost.

Recall that CSOVO comes from coupling the cost-transformation technique with OVO,
and we discussed in Section 3 that cost transformation inevitably introduces multi-labeling
ambiguity into the learning process. The ambiguity acts like noise, and generally makes the
learning tasks more difficult. On the vowel data set, OVO readily achieves low test error
and hence low test cost, while CSOVO suffers from the difficult learning tasks and hence
gets high test cost. Similar situations happen on segment, dna, usps, in which the test cost
of CSOVO and OVO are quite close. That is, it is worth trading the cost information for
easier learning tasks. On the other hand, when OVO cannot achieve low test error (like
on vehicle) or when the cost information is extremely important (like on pageblock), it is
worth trading the easy learning tasks for knowing the accurate cost information, and thus
CSOVO performs better.

5.2. CSOVO versus WAP and APFT

Next, we compare CSOVO with WAP and APFT in terms of the average test cost in
Table 2. We see that CSOVO and WAP are comparable in performance, with WAP being

13

Lin

Table 2: test cost of CSOVO/WAP/APFT

data set CSOVO WAP APFT
zoo 36.79±9.09 49.09±16.67 56.92±15.41
glass 210.06±15.88 220.29±18.56 215.95±17.36
vehicle 155.14±20.63 148.63±19.74 158.60±20.35
vowel 20.05±1.95 19.36±1.81 27.59±2.94
yeast 52.45±2.97 52.71±3.58 63.53±8.11

segment 25.27±2.25 24.40±1.96 28.51±2.55
dna 53.18±4.25 51.13±4.37 53.37±5.49

pageblock 24.98±4.94 20.68±2.52 25.60±4.98
satimage 66.57±4.77 72.05±5.13 80.70±5.98
usps 20.51±1.17 21.04±1.19 29.75±1.75

slightly worse on satimage and CSOVO being slightly worse on pageblock. The similarity is
natural because CSOVO and WAP are only different in the weights given to the underlying
binary examples. On the other hand, Table 2 shows that APFT usually performs slightly
worse than CSOVO and WAP. Thus, CSOVO and WAP should be better choices, unless
the O(K) prediction time (and the shorter O(K2) training time because of the conditioning
on the tournament) of APFT is needed. Again, the t-test results in Table 4 lead to the
same conclusion.

In summary, CSOVO performs better than APFT; CSOVO performs similarly to WAP
but enjoys a simpler and implementation (see Subsection 4.4). Thus, CSOVO should be
preferred over both WAP and APFT in practice.

5.3. CSOVO versus Others

Next, we compare CSOVO with four other existing algorithms, namely TREE (Beygelzimer
et al., 2005), Filter Tree (FT; Beygelzimer et al., 2007), and Sensitive Error Correcting
Output Codes (SECOC; Langford and Beygelzimer, 2005). The algorithms cover major
types of decompositions from multiclass classification to binary classification.

Table 3 compares the average test RP cost of CSOVO, TREE, FT, and SECOC; Table 4
lists the paired t-test results with significance level 0.05. SECOC is the worst of the five,
which is because it contains a thresholding (quantization) step that can lead to an inaccurate
representation of the cost information.

FT performs slightly worse than CSOVO, which demonstrates that a full pairwise com-
parison (CSOVO/WAP) can be more stable than an elimination-based tournament (FT).
TREE performs even worse than FT, which complies with the finding in the original FT
paper (Beygelzimer et al., 2007) that a regret-based reduction (FT) can be more robust
than an error-based reduction (TREE). Overall, Table 3 and Table 4 suggest that CSOVO
is the best meta-algorithm of the four.

6. Conclusion

We presented the cost-transformation technique, which can transform any cost vector c to
a similar one that is decomposable to the classification cost Cc with the minimum entropy.
The technique allowed us to design the TSEW algorithm, which can be generally applied
to make any regular classification algorithm cost-sensitive. We coupled TSEW with the

14

Reduction from Cost-sensitie Multiclass Classification to Binary

Table 3: test cost of meta-algorithms that reduce cost-sensitive to binary classification

data set CSOVO FT TREE SECOC
zoo 36.79±9.09 74.01±27.65 57.07±17.40 179.02±30.52
glass 210.06±15.88 212.76±19.38 264.02±24.49 347.77±37.87
vehicle 155.14±20.63 156.01±20.14 156.72±20.12 167.60±20.97
vowel 20.05±1.95 24.66±2.92 28.42±3.02 95.25±7.35
yeast 52.45±2.97 53.73±3.14 66.49±6.09 277.14±49.41

segment 25.27±2.25 27.06±2.32 27.76±2.26 68.08±4.02
dna 53.18±4.25 53.76±4.23 55.32±4.39 65.90±5.66

pageblock 24.98±4.94 29.93±6.16 23.00±3.28 249.28±67.31
satimage 66.57±4.77 74.01±4.57 78.13±4.31 102.81±5.41
usps 20.51±1.17 27.07±1.52 25.74±1.55 86.59±9.45

Table 4: t-test for comparing CSOVO with other meta-algorithms using RP cost

data set OVO WAP APFT FT TREE SECOC
zoo ◦ ∼ ∼ ∼ ∼ ◦
glass ◦ ∼ ∼ ∼ ◦ ◦
vehicle ◦ ∼ ∼ ∼ ∼ ◦
vowel × ∼ ◦ ◦ ◦ ◦
yeast ◦ ∼ ∼ ∼ ◦ ◦

segment ∼ ∼ ◦ ◦ ◦ ◦
dna ∼ ∼ ∼ ∼ ∼ ◦

pageblock ◦ ∼ ∼ ∼ ∼ ◦
satimage ◦ ◦ ◦ ◦ ◦ ◦
usps ◦ ∼ ◦ ◦ ◦ ◦

◦: CSOVO significantly better; ×: CSOVO significantly worse; ∼: similar

popular OVO meta-algorithm, and obtained a novel CSOVO algorithm that can conquer
cost-sensitive classification by reducing it to several binary classification tasks. Experimen-
tal results demonstrated that CSOVO can be significantly better than the original OVO for
cost-sensitive classification, which justified the usefulness of CSOVO.

We also analyzed the theoretical guarantee of CSOVO, and discussed its similarity to
the existing WAP algorithm. We conducted a thorough experimental study that compared
CSOVO with not only WAP but also many major meta-algorithms that reduce cost-sensitive
classification to binary classification. We empirically found that CSOVO is similar to WAP
but performs better than other major meta-algorithms on many cost-sensitive classification
data sets. The results make CSOVO a promising meta-algorithm from cost-sensitive to
binary classification.

While CSOVO can perform well for cost-sensitive classification, it does not scale well
with K, the number of classes. Applying the cost-transformation technique to design more
efficient cost-sensitive classification algorithms will be an important future research direc-
tion.

15

Lin

References

Naoki Abe, Bianca Zadrozny, and John Langford. An iterative method for multi-class
cost-sensitive learning. In KDD, pages 3–11. ACM, 2004.

Alina Beygelzimer, Varsha Dani, Tom Hayes, John Langford, and Bianca Zadrozny. Error
limiting reductions between classification tasks. In ICML, pages 49–56. ACM, 2005.

Alina Beygelzimer, John Langford, and Pradeep Ravikumar. Multiclass classification with
filter trees. Downloaded from http://hunch.net/~jl, 2007.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines.
National Taiwan University, 2001. Software available at http://www.csie.ntu.edu.tw/

~cjlin/libsvm.

Pedro Domingos. MetaCost: A general method for making classifiers cost-sensitive. In
KDD, pages 155–164. ACM, 1999.

Seth Hettich, Catherine L. Blake, and Christopher J. Merz. UCI repository of ma-
chine learning databases, 1998. Downloadable at http://www.ics.uci.edu/~mlearn/

MLRepository.html.

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector
machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to support vector
classification. Technical report, National Taiwan University, 2003.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994.

John Langford and Alina Beygelzimer. Sensitive error correcting output codes. In COLT,
pages 158–172. Springer-Verlag, 2005.

Hsuan-Tien Lin and Ling Li. Support vector machinery for infinite ensemble learning.
Journal of Machine Learning Research, 9:285–312, 2008.

Dragos Dorin Margineantu. Methods for Cost-Sensitive Learning. PhD thesis, Oregon State
University, 2001.

Fen Xia, Liang Zhou, Yanwu Yang, and Wensheng Zhang. Ordinal regression as multiclass
classification. International Journal of Intelligent Control and Systems, 12(3):230–236,
2007.

Bianca Zadrozny, John Langford, and Naoki Abe. Cost sensitive learning by cost-
proportionate example weighting. In ICDM, pages 435–442, 2003.

Zhi-Hua Zhou and Xu-Ying Liu. On multi-class cost-sensitive learning. In AAAI, pages
567–572, 2006.

16

http://hunch.net/~jl
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

Reduction from Cost-sensitie Multiclass Classification to Binary

Appendix A. Proof of Theorem 6

Proof If not all c[`] are equal, not all q[`] are equal. Now we substitute those p̃ in the
objective function by the right-hand sides of the equality constraints. Then, the objective
function becomes

f(∆) = −
K∑
`=1

q[`] + ∆∑K
k=1 q[k] + K∆

log
q[`] + ∆∑K

k=1 q[k] + K∆
.

The constraint on ∆ ensures that all the p log p operations above are well defined.4 Now,
let q̄ ≡ 1

K

∑K
k=1 q[k]. We get

df

d∆
= − 1

K (q̄ + ∆)2

K∑
`=1

(−q[`] + q̄) ·
(

log

(
q[`] + ∆

q̄ + ∆

)
− logK + 1

)

= − 1

K (q̄ + ∆)2

K∑
`=1

− (q[`] + ∆)︸ ︷︷ ︸
a`

+ (q̄ + ∆)︸ ︷︷ ︸
b`

 · log
q[`] + ∆

q̄ + ∆

=
1

K (q̄ + ∆)2

K∑
`=1

(
a` − b`

)
·
(
log a` − log b`

)
.

When not all q[`] are equal, there exists at least one a` that is not equal to b`. Therefore,
df
d∆ is strictly positive, and hence the unique minimum of f(∆) happens when ∆ is of the
smallest possible value. That is, for the unique optimal solution,∆ = max

1≤`≤K
(−q[`]) = cmax −

(
1

K−1

∑K
k=1 c[k]

)
;

q̃[`] = cmax − c[`] , p̃[`] = cmax−c[`]∑K
k=1(cmax−c[k])

.

4. We take the convention that 0 log 0 ≡ limε→0 ε log ε = 0.

17

	Introduction
	Problem Setup
	Cost Transformation
	Cost-Sensitive One-Versus-One
	Original One-versus-one
	Cost-sensitive One-versus-one
	Theoretical Guarantee
	A Sibling Algorithm: Weighted All-pairs
	Another Sibling Algorithm: All-pair Filter Tree

	Experiments
	CSOVO versus OVO
	CSOVO versus WAP and APFT
	CSOVO versus Others

	Conclusion
	Proof of Theorem 6

