Data Structures and Algorithms (資料結構與演算法) Lecture 3: Analysis Tools Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

> Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

the one where it all began

Lecture 2: Data Structures

scheme of purposefully organizing data with access/maintenance algorithms, such as ordered array for faster search

Lecture 3: Analysis Tools

- motivation
- cases of complexity analysis
- asymptotic notation
- usage of asymptotic notation
- 2 the data structures awaken
- 3 fantastic trees and where to find them
- 4 the search revolutions
- **5** sorting: the final frontier

motivation

motivation

Recall: Properties of Good Program

good program: proper use of resources

Space Resources	Computation Resources
 memory 	• CPU(s)
• disk(s)	• GPU(s)
 transmission bandwidth 	 computation power
-space complexity	-time complexity

need: language for describing complexity

motivation

(Extra-)Space Complexity of $\operatorname{Get-Min}$

Get-Min(A) 1 m = 1 // store current min. index 2 for i = 2 to A. length 3 // update if *i*-th element smaller 4 if A[m] > A[i]5 m = i6 return A[m]

- array A: pointer size s_0 and n = A. *length* elements —extra-space complexity: not counting the input data
- integer *m*: size s₁
- integer i: size s1

total space 2s1: constant to n

motivation

Space Complexity of $\operatorname{Get-Min-Waste}$

- Get-Min-Waste(*A*)
- 1 B = Copy(A, 1, A. length)
- 2 Insertion-Sort(B)
- 3 return *B*[1]
- array A: pointer size s_0 and n = A. length elements
- array B:
 - pointer size s₀
 - *n* integers with total size $s_1 \cdot n$, where n = A. length
- any space that Insertion-Sort uses:

total space $s_0 + s_1 n + \Box$: (at least) linear to *n*

motivation

Time Complexity of Insertion Sort

Insertion-Sort(A)		cost	number of times
1	for $m = 2$ to A. length	<i>d</i> ₁	п
2	key = A[m]	<i>d</i> ₂	<i>n</i> – 1
3	// insert A[m] into the sorted	0	<i>n</i> – 1
	sequence <i>A</i> [1 <i>m</i> - 1]		
4	i = m - 1	d_4	<i>n</i> – 1
5	while $i > 0$ and $A[i] > key$	d 5	$\sum_{m=2}^{n} t_{m}$
6	A[i+1] = A[i]	d 6	$\frac{\sum_{m=2}^{n} t_m}{\sum_{m=2}^{n} (t_m - 1)}$
7	i = i - 1	d 7	$\sum_{m=2}^{n} (t_m - 1)$
8	A[i+1] = key	d 8	n-1

(from Introduction to Algorithms Third Edition, Cormen at al.)

total time T(n)= $d_1n + d_2(n-1) + d_4(n-1) + d_5 \sum_{m=2}^{n} t_m + d_6 \sum_{m=2}^{n} (t_m - 1) + d_7 \sum_{m=2}^{n} (t_m - 1) + d_8(n-1)$

actual time d_{\bullet} depends on machine type; total T(n) depends on n and t_m , number of while checks

Consider running Get-Min on an array *A* of length *n*. If line *i* takes a time cost of d_i , and the inequality in line 4 is TRUE for *t* times, what is the time complexity of Get-Min?

Get-Min(A)

4

5

- 1 m = 1 // store current min. index
- 2 for i = 2 to A. length 3 // update if *i*-th element smaller

if
$$A[m] > A[n]$$

6 return A[m]

 $\begin{array}{l} \bullet d_1 + d_2 + d_4 + d_5 + d_6 \\ \bullet d_1 + td_2 + td_4 + td_5 + d_6 \\ \bullet d_1 + nd_2 + td_4 + td_5 + d_6 \\ \bullet d_1 + nd_2 + (n-1)d_4 + td_5 + d_6 \end{array}$

Consider running Get-Min on an array *A* of length *n*. If line *i* takes a time cost of d_i , and the inequality in line 4 is TRUE for *t* times, what is the time complexity of Get-Min?

Get-Min(A)

- 1 m = 1 //store current min. index
- 2 for i = 2 to A. length 3 // update if *i*-th element smaller
- 4 if A[m] > A[i]

$$m =$$

6 return A[m]

5

Reference Answer: (4)

The loop (including ending check) in line 2 is run n times; the condition in line 4 is checked n - 1 times, and t of those result in execution of line 5.

cases of complexity analysis

Best-case Time Complexity of Insertion Sort

Insertion-Sort(A)		cost	number of times
1	for $m = 2$ to A. length	<i>d</i> ₁	п
2	key = A[m]	d ₂	<i>n</i> – 1
3	// insert A[m] into the sorted	0	<i>n</i> – 1
	sequence $A[1 \dots m-1]$		
4	i = m - 1	d_4	<i>n</i> – 1
5	while $i > 0$ and $A[i] > key$	d 5	$\sum_{m=2}^{n} t_m$
6	A[i+1] = A[i]	<i>d</i> ₆	$\frac{\sum_{m=2}^{n} t_{m}}{\sum_{m=2}^{n} (t_{m} - 1)} \\ \sum_{m=2}^{n} (t_{m} - 1)$
7	i = i - 1	d 7	$\sum_{m=2}^{m} (t_m - 1)$
8	A[i+1] = key	d 8	n-1

(from Introduction to Algorithms Third Edition, Cormen at al.)

sorted
$$A \Longrightarrow \frac{t_m}{t_m} = 1$$

 $T(n)$
 $= d_1 n + d_2(n-1) + d_4(n-1) + d_5 \sum_{m=2}^n t_m + d_6 \sum_{m=2}^n (t_m-1) + d_7 \sum_{m=2}^n (t_m-1) + d_8(n-1)$
 $= d_1 n + d_2(n-1) + d_4(n-1) + d_5(n-1) + d_6(0) + d_7(0) + d_8(n-1)$

best case: $T(n) = \blacksquare \cdot n + \blacklozenge$ (linear to *n*)

cases of complexity analysis

Worst-case Time Complexity of Insertion Sort

Insertion-Sort(A)		cost	number of times
1	for $m = 2$ to A. length	<i>d</i> ₁	п
2	key = A[m]	d ₂	<i>n</i> – 1
3	// insert A[m] into the sorted	0	<i>n</i> – 1
	sequence <i>A</i> [1 <i>m</i> - 1]		
4	i = m - 1	d_4	<i>n</i> – 1
5	while $i > 0$ and $A[i] > key$	d 5	$\frac{\sum_{m=2}^{n} t_m}{\sum_{m=2}^{n} (t_m - 1)}$
6	A[i+1] = A[i]	d 6	$\sum_{m=2}^{n} (\underline{t_m} - 1)$
7	i = i - 1	d 7	$\sum_{m=2}^{m-2} (t_m - 1)$
8	A[i+1] = key	d ₈	n-1

(from Introduction to Algorithms Third Edition, Cormen at al.)

reverse-sorted
$$A \Longrightarrow t_m = m$$

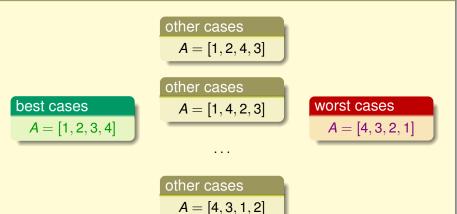
 $T(n)$
 $= d_1 n + d_2(n-1) + d_4(n-1) + d_5 \sum_{m=2}^{n} t_m + d_6 \sum_{m=2}^{n} (t_m - 1) + d_7 \sum_{m=2}^{n} (t_m - 1) + d_8(n-1)$
 $= d_1 n + d_2(n-1) + d_4(n-1) + d_5(\frac{(n+2)(n-1)}{2}) + d_6(\frac{n(n-1)}{2}) + d_7(\frac{n(n-1)}{2}) + d_8(n-1)$

worst case:
$$T(n) = \bigstar \cdot n^2 + \blacksquare \cdot n + \blacklozenge$$
 (quadratic to *n*)

cases of complexity analysis

Average-case Time Complexity of Insertion Sort

average case



best case \leq average case \leq worst case

cases of complexity analysis Time Complexity Analysis in Practice

Common Focus

worst-case time complexity

- physically meaningful: longest wait time/ max. power consumption
- often \approx average: when enough near-worst-cases

Common Language

rough time needed w.r.t. input size *n*

$$T(n) = \bigstar \cdot n^2 + \blacksquare \cdot n + \blacklozenge$$

- care more about
 - larger n
 - leading term of n
- care less about
 - constants
 - other terms of n

next: language of rough notation

Which of the following describes the best-case time complexity of Get-Min on an array A of length n?

Get-Min(A)

- m = 1 // store current min. index1
- 2 for i = 2 to A. length
- // update if *i*-th element smaller 3

4 if
$$A[m] > A[$$

5 $m = i$

6 return A[m]

- constant to n Ð
- Iinear to n
- guadratic to n
- none of the other choices 4

4

Fun Time

Which of the following describes the best-case time complexity of Get-Min on an array A of length n?

Get-Min(A)

- m = 1 // store current min. index
- 2 for i = 2 to A. length
- // update if *i*-th element smaller 3

4 if
$$A[m] > A[$$

5 $m = i$

- m = i
- 6 return A[m]

constant to n

- linear to n 2
- guadratic to n
- none of the other choices

Reference Answer: (2)

Even in the best case, where line 5 is executed 0 times, the loop (including ending check) in line 2 still needs to be run *n* times, and the condition in line 4 still needs to be checked n-1 times.

asymptotic notation

'Rough' Notation

notation

$$\underbrace{\bigstar \cdot n^2 + \blacksquare \cdot n + \bigstar}_{f(n)} = \Theta(\underbrace{n^2}_{g(n)})$$

for positive f(n) and g(n) [when $n \in \mathbb{R}$ with $n \ge 1$]

extracting the similarity: consider $\frac{f(n)}{g(n)}$

Modeling Roughly with Asymptotic Behavior

goal

$$\underbrace{\bigstar \cdot n^2 + \blacksquare \cdot n + \diamondsuit}_{f(n)} = \Theta(\underbrace{n^2}_{g(n)})$$

- growth of · n + ♦ slower than g(n) = n²:
 for large n, removable by dividing g(n)
- asymptotically, two functions only differ by c > 0

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$$

—why needing c > 0?

'rough' definition ver. 0 (to be changed): for positive f(n) and g(n), $f(n) = \Theta(g(n))$ if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0$

asymptotic notation

Asymptotic Notation

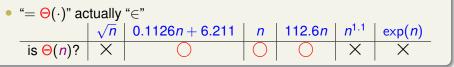
$$f(n) = \Theta(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0$$

 Θ : f(n) grows roughly the same as g(n)

- definition meets criteria:
 - care about larger *n*: yes, $n \rightarrow \infty$
 - leading term more important than other terms:

yes,
$$n + \sqrt{n} + \log n = \Theta(n)$$

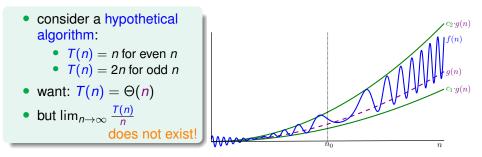
• insensitive to constants: yes, $1126n = \Theta(n)$



asymptotic notation: 'language' for time/space complexity

asymptotic notation Issue about the Convergence Definition

$$f(n) = \Theta(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = c > 0$$



fixed (formal) definition ver. 1: for asymptotically non-negative f(n) and g(n), $f(n) = \Theta(g(n))$ if and only if there exists positive (n_0, c_1, c_2) such that $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_0$

Convergence Condition \Rightarrow Formal Definition

Theorem: For asymptotically non-negative functions f(n) and g(n),

if $\lim_{n\to\infty} \frac{f(n)}{q(n)} = c$ (convergence condition),

then $f(n) = \Theta(g(n))$ (formal definition).

Proof

• definition of $\lim_{n\to\infty}$: for all $\epsilon > 0$, there exists $n_{\epsilon} > 0$ such that for all $n > n_{\epsilon}$, $\left|\frac{f(n)}{g(n)} - c\right| < \epsilon$

• choose any $\epsilon' > 0$, and let $n'_0 = n_{\epsilon'} + 1$, $c'_1 = c - \epsilon'$, $c'_2 = c + \epsilon'$

• then for all $n \ge n'_0$, $\underbrace{c-\epsilon'}_{c'_1} < \frac{f(n)}{g(n)} < \underbrace{c+\epsilon'}_{c'_2}$, that is,

 $c'_1 \cdot g(n) \leq f(n) \leq c'_2 \cdot g(n)$

• witness (n'_0, c'_1, c'_2) proves $f(n) = \Theta(g(n))$

often suffices to use convergence condition in practice

For asymptotically non-negative functions f(n) and g(n), which of the following condition is sufficient for stating $f(n) = \Theta(g(n))$?

1
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$$
 for some constant $c > 0$

2 there is (n_0, c_1, c_2) such that $c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$ **3** $g(n) = \Theta(f(n))$

4 all of the other choices

For asymptotically non-negative functions f(n) and g(n), which of the following condition is sufficient for stating $f(n) = \Theta(g(n))$?

1
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$$
 for some constant $c > 0$

2 there is (n_0, c_1, c_2) such that $c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$ 3 $g(n) = \Theta(f(n))$

4 all of the other choices

Reference Answer: (4)

 $\underbrace{1}$ is the convergence condition;

- 2) is the formal definition of Θ ;
- 3) can be proved by converting the witness (n_0, c_1, c_2) for $g(n) = \Theta(f(n))$ to
 - the witness $(n_0, \frac{1}{c_2}, \frac{1}{c_1})$ for $f(n) = \Theta(g(n))$.

usage of asymptotic notation

The Seven Functions as g(n)

popular choices

- g(n) = 1: constant
 - —meaning $c_1 \leq f(n) \leq c_2$ for $n \geq n_0$
- $g(n) = \log n$: logarithmic —does base matter?
- g(n) = n: linear
- $g(n) = n \log n$
- $g(n) = n^2$: square
- $g(n) = n^3$: cubic
- $g(n) = 2^n$: exponential
 - -does base matter?

will often encounter them in future classes

Logarithmic Function in Asymptotic Notation

Claim: base does not matter for logarithmic function

For any a > 1, b > 1, if $f(n) = \Theta(\log_a n)$, then $f(n) = \Theta(\log_b n)$.

Proof

- $f(n) = \Theta(\log_a n)$: $\exists (c_1 > 0, c_2 > 0, n_0 > 0)$ such that $c_1 \log_a n \le f(n) \le c_2 \log_a n$ for $n \ge n_0$.
- Then, $c_1 \cdot \underbrace{\log_a b \cdot \log_b n}_{\log_a n} \leq f(n) \leq c_2 \cdot \log_a b \cdot \log_b n$ for $n \geq n_0$.
- Note that $\log_a b > 0$ because a > 1 and b > 1.
- Let $c_1' = c_1 \log_a b > 0$, $c_2' = c_2 \log_a b > 0$, $n_0' = n_0 > 0$. Then, (n_0', c_1', c_2') witnesses

$$c_1'\log_b n \leq f(n) \leq c_2'\log_b n$$

for $n \ge n'_0$, thus proving $f(n) = \Theta(\log_b n)$.

base does not matter in $\Theta(\log n)$

usage of asymptotic notation

Exponential Function in Asymptotic Notation

Claim: base does not matter for logarithmic function

For any a > b > 1 with, if $f(n) = \Theta(a^n)$, then $f(n) \neq \Theta(b^n)$.

Proof

(prove by contradiction)

First, assume that $f(n) = \Theta(a^n)$ AND $f(n) = \Theta(b^n)$.

- Then, by definition,
 - $\exists (c_1 > 0, c_2 > 0, n_0 > 0)$ such that $c_1 a^n \le f(n) \le c_2 a^n$ for $n \ge n_0$.
 - $\exists (c'_1 > 0, c'_2 > 0, n'_0 > 0)$ such that $c'_1 b^n \leq f(n) \leq c'_2 b^n$ for $n \geq n'_0$.
- Thus, for arbitrarily big $n \ge \max(n_0, n'_0)$, $c_1 a^n \le f(n) \le c'_2 b^n$
- Take log on both sides: $\log c_1 + n \log a \le \log c'_2 + n \log b$, which implies that $n \le \frac{\log c'_2 \log c_1}{\log a \log b}$ because a > b.
- That is, n cannot be arbitrarily big. CONTRADICTION!

base matters in $\Theta(a^n)$

Analysis of Sequential Search

Seq-Search(A, key) 1 n = A. length2 for i = 1 to n3 // return when found 4 if A[i] equals key 5 return i6 return nil

best case (i.e. *key* at A[1]): T(n) = Θ(1)
 —lines 1-5 executed once with constant time d₁ to d₅, remember? :-)

worst case (i.e. return nil): T(n) = Θ(n)
 —lines 2 for n+1 times, lines 3-4 for n times, others constant

often # of loop iterations dominates!

Analysis of Binary Search

```
Bin-Search(A, key, \ell, r)
    while \ell < r
2
          m = \text{floor}((\ell + r)/2)
3
          if A[m] equals key
               return m
4
5
          elseif A[m] > key
6
                r = m - 1 // \text{ cut out end}
7
          elseif A[m] < key
8
                \ell = m + 1 // \text{ cut out begin}
9
    return nil
```

for $n = r - \ell + 1$

- best case (i.e. *key* at first *m*): $T(n) = \Theta(1)$
- worst case (i.e. return nil): $T(n) = \Theta(\log_2 n)$ because

$$T(n) = T(\lceil \frac{n-1}{2} \rceil) + \text{`constant'}$$

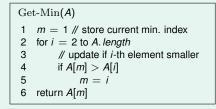
often care more about worst case, as mentioned

What is the time complexity of Get-Min on an array A of length *n*?

Get-Min(A)	
1	m = 1 // store current min. index
2	for $i = 2$ to A. length
3	// update if <i>i</i> -th element smaller
4	if $A[m] > A[i]$
5	m = i
6	return A[m]

 $\Theta(1)$ $\Theta(\log n)$ $\Theta(n)$ $\Theta(n^2)$

What is the time complexity of Get-Min on an array A of length *n*?



Reference Answer: (3)

The loop (including ending check) in line 2 is run n times (regardless of the best case or the worst case), remember? :-)

Summary

Lecture 3: Analysis Tools motivation roughly quantify time/space complexity (efficiency) cases of complexity analysis often focus on worst-case with 'rough' notations asymptotic notation rough comparison of function for large n usage of asymptotic notation describe f(n) for time or space by simpler g(n)

next: more asymptotic notations for realistic use