
Data Structures and Algorithms
(資料結構與演算法)
Lecture 3: Analysis Tools

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(國立台灣大學資訊工程系)

Hsuan-Tien Lin (NTU CSIE) Data Structures and Algorithms 0/28

htlin@csie.ntu.edu.tw


Analysis Tools

Roadmap
1 the one where it all began

Lecture 2: Data Structures
scheme of purposefully organizing data with

access/maintenance algorithms, such as
ordered array for faster search

Lecture 3: Analysis Tools
motivation
cases of complexity analysis
asymptotic notation
usage of asymptotic notation

2 the data structures awaken
3 fantastic trees and where to find them
4 the search revolutions
5 sorting: the final frontier
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motivation



Analysis Tools motivation

Recall: Properties of Good Program

good program: proper use of resources

Space Resources
• memory
• disk(s)
• transmission bandwidth

—space complexity

Computation Resources
• CPU(s)
• GPU(s)
• computation power

—time complexity

need: language for describing complexity
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Analysis Tools motivation

(Extra-)Space Complexity of Get-Min

Get-Min(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return A[m]

• array A: pointer size s0 and n = A. length elements
—extra-space complexity: not counting the input data

• integer m: size s1

• integer i : size s1

total space 2s1: constant to n
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Analysis Tools motivation

Space Complexity of Get-Min-Waste

Get-Min-Waste(A)

1 B = Copy(A, 1,A. length)
2 Insertion-Sort(B)
3 return B[1]

• array A: pointer size s0 and n = A. length elements
• array B:

• pointer size s0
• n integers with total size s1 · n, where n = A. length

• any space that Insertion-Sort uses: 2

total space s0 + s1n +2: (at least) linear to n
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Analysis Tools motivation

Time Complexity of Insertion Sort
Insertion-Sort(A) cost number of times

1 for m = 2 to A. length d1 n
2 key = A[m] d2 n − 1
3 // insert A[m] into the sorted 0 n − 1

sequence A[1 . .m − 1]
4 i = m − 1 d4 n − 1
5 while i > 0 and A[i] > key d5

∑n
m=2 tm

6 A[i + 1] = A[i] d6
∑n

m=2(tm − 1)
7 i = i − 1 d7

∑n
m=2(tm − 1)

8 A[i + 1] = key d8 n − 1

(from Introduction to Algorithms Third Edition, Cormen at al.)

total time T (n)

= d1n + d2(n − 1) + d4(n − 1) + d5

n∑
m=2

tm + d6

n∑
m=2

(tm − 1) + d7

n∑
m=2

(tm − 1) + d8(n − 1)

actual time d• depends on machine type;
total T (n) depends on n and tm, number of while checks
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Analysis Tools motivation

Fun Time
Consider running Get-Min on an array A of length n. If line i takes a
time cost of di , and the inequality in line 4 is TRUE for t times, what
is the time complexity of Get-Min?

Get-Min(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return A[m]

1 d1 + d2 + d4 + d5 + d6

2 d1 + td2 + td4 + td5 + d6

3 d1 + nd2 + td4 + td5 + d6

4 d1 + nd2 + (n − 1)d4 + td5 + d6

Reference Answer: 4

The loop (including ending check) in line 2 is run
n times; the condition in line 4 is checked n − 1
times, and t of those result in execution of line 5.
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Analysis Tools cases of complexity analysis

Best-case Time Complexity of Insertion Sort
Insertion-Sort(A) cost number of times

1 for m = 2 to A. length d1 n
2 key = A[m] d2 n − 1
3 // insert A[m] into the sorted 0 n − 1

sequence A[1 . .m − 1]
4 i = m − 1 d4 n − 1
5 while i > 0 and A[i] > key d5

∑n
m=2 tm

6 A[i + 1] = A[i] d6
∑n

m=2(tm − 1)
7 i = i − 1 d7

∑n
m=2(tm − 1)

8 A[i + 1] = key d8 n − 1

(from Introduction to Algorithms Third Edition, Cormen at al.)

sorted A =⇒ tm = 1

T (n)

= d1n + d2(n − 1) + d4(n − 1) + d5

n∑
m=2

tm + d6

n∑
m=2

(tm − 1) + d7

n∑
m=2

(tm − 1) + d8(n − 1)

= d1n + d2(n − 1) + d4(n − 1) + d5(n − 1) + d6(0) + d7(0) + d8(n − 1)

best case: T (n) = ■ · n + ♦ (linear to n)
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Analysis Tools cases of complexity analysis

Worst-case Time Complexity of Insertion Sort
Insertion-Sort(A) cost number of times

1 for m = 2 to A. length d1 n
2 key = A[m] d2 n − 1
3 // insert A[m] into the sorted 0 n − 1

sequence A[1 . .m − 1]
4 i = m − 1 d4 n − 1
5 while i > 0 and A[i] > key d5

∑n
m=2 tm

6 A[i + 1] = A[i] d6
∑n

m=2(tm − 1)
7 i = i − 1 d7

∑n
m=2(tm − 1)

8 A[i + 1] = key d8 n − 1

(from Introduction to Algorithms Third Edition, Cormen at al.)

reverse-sorted A =⇒ tm = m

T (n)

= d1n + d2(n − 1) + d4(n − 1) + d5

n∑
m=2

tm + d6

n∑
m=2

(tm − 1) + d7

n∑
m=2

(tm − 1) + d8(n − 1)

= d1n + d2(n − 1) + d4(n − 1) + d5(
(n+2)(n−1)

2 ) + d6(
n(n−1)

2 ) + d7(
n(n−1)

2 ) + d8(n − 1)

worst case: T (n) = ⋆ · n2 +■ · n + ♦ (quadratic to n)
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Analysis Tools cases of complexity analysis

Average-case Time Complexity of Insertion Sort

average case

best cases
A = [1, 2, 3, 4]

other cases
A = [1, 2, 4, 3]

other cases
A = [1, 4, 2, 3]

. . .

other cases
A = [4, 3, 1, 2]

worst cases
A = [4, 3, 2, 1]

best case ≤ average case ≤ worst case
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Analysis Tools cases of complexity analysis

Time Complexity Analysis in Practice

Common Focus
worst-case time complexity

• physically meaningful:
longest wait time/

max. power consumption
• often ≈ average: when

enough near-worst-cases

Common Language
rough time needed

w.r.t. input size n

T (n) = ⋆·n2+■ · n + ♦

• care more about
• larger n
• leading term of n

• care less about
• constants
• other terms of n

next: language of rough notation
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Analysis Tools cases of complexity analysis

Fun Time
Which of the following describes the best-case time complexity of
Get-Min on an array A of length n?

Get-Min(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return A[m]

1 constant to n

2 linear to n

3 quadratic to n

4 none of the other choices

Reference Answer: 2

Even in the best case, where line 5 is executed 0
times, the loop (including ending check) in line 2
still needs to be run n times, and the condition in
line 4 still needs to be checked n − 1 times.
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Analysis Tools asymptotic notation

‘Rough’ Notation
goal

⋆·n2+■ · n + ♦
roughly∼ n2

• care more about
• larger n
• leading term of n

• care less about
• constants
• other terms of n

notation

⋆ · n2 +■ · n + ♦︸ ︷︷ ︸
f (n)

= Θ( n2︸︷︷︸
g(n)

)

for positive f (n) and g(n) [when n ∈ R with n ≥ 1]

extracting the similarity: consider f (n)
g(n)
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Analysis Tools asymptotic notation

Modeling Roughly with Asymptotic Behavior
goal

⋆ · n2 +■ · n + ♦︸ ︷︷ ︸
f (n)

= Θ( n2︸︷︷︸
g(n)

)

• growth of ■ · n + ♦ slower than g(n) = n2:
for large n, removable by dividing g(n)

• asymptotically, two functions only differ by c > 0

lim
n→∞

f (n)
g(n)

= c

—why needing c > 0?

‘rough’ definition ver. 0 (to be changed):

for positive f (n) and g(n), f (n) = Θ(g(n))
if limn→∞

f (n)
g(n) = c > 0
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Analysis Tools asymptotic notation

Asymptotic Notation

f (n) = Θ(g(n)) ⇐= lim
n→∞

f (n)
g(n)

= c > 0

Θ: f (n) grows roughly the same as g(n)
• definition meets criteria:

• care about larger n: yes, n→ ∞
• leading term more important than other terms:

yes, n +
√

n + log n = Θ(n)
• insensitive to constants: yes, 1126n = Θ(n)

• “= Θ(·)” actually “∈”√
n 0.1126n + 6.211 n 112.6n n1.1 exp(n)

is Θ(n)? × ⃝ ⃝ ⃝ × ×

asymptotic notation: ‘language’ for time/space complexity
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Analysis Tools asymptotic notation

Issue about the Convergence Definition

f (n) = Θ(g(n)) ⇐= lim
n→∞

f (n)
g(n)

= c > 0

• consider a hypothetical
algorithm:

• T (n) = n for even n
• T (n) = 2n for odd n

• want: T (n) = Θ(n)

• but limn→∞
T (n)

n
does not exist!

c1·g(n)

g(n)

c2·g(n)
f(n)

n0 n

fixed (formal) definition ver. 1:
for asymptotically non-negative f (n) and g(n),

f (n) = Θ(g(n)) if and only if there exists positive (n0, c1, c2)
such that c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0
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Analysis Tools asymptotic notation

Convergence Condition ⇒ Formal Definition
Theorem: For asymptotically non-negative functions f (n) and g(n),

if limn→∞
f (n)
g(n) = c (convergence condition),

then f (n) = Θ(g(n)) (formal definition).

Proof
• definition of limn→∞: for all ϵ > 0, there exists nϵ > 0 such that for all

n > nϵ,
∣∣∣ f (n)

g(n) − c
∣∣∣ < ϵ

• choose any ϵ′ > 0, and let n′
0 = nϵ′ + 1, c′

1 = c − ϵ′, c′
2 = c + ϵ′

• then for all n ≥ n′
0, c − ϵ′︸ ︷︷ ︸

c′1

< f (n)
g(n) < c + ϵ′︸ ︷︷ ︸

c′2

, that is,

c′
1·g(n) ≤ f (n) ≤ c′

2·g(n)

• witness (n′
0, c

′
1, c

′
2) proves f (n) = Θ(g(n))

often suffices to use convergence condition in practice
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Analysis Tools asymptotic notation

Fun Time

For asymptotically non-negative functions f (n) and g(n), which of
the following condition is sufficient for stating f (n) = Θ(g(n))?

1 limn→∞
f (n)
g(n) = c for some constant c > 0

2 there is (n0, c1, c2) such that c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0

3 g(n) = Θ(f (n))

4 all of the other choices

Reference Answer: 4

1 is the convergence condition;

2 is the formal definition of Θ;

3 can be proved by converting
the witness (n0, c1, c2) for g(n) = Θ(f (n)) to
the witness (n0,

1
c2
, 1

c1
) for f (n) = Θ(g(n)).
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Analysis Tools usage of asymptotic notation

The Seven Functions as g(n)

popular choices
• g(n) = 1: constant

—meaning c1 ≤ f (n) ≤ c2 for n ≥ n0

• g(n) = log n: logarithmic
—does base matter?

• g(n) = n: linear
• g(n) = n log n
• g(n) = n2: square
• g(n) = n3: cubic
• g(n) = 2n: exponential

—does base matter?

will often encounter them in future classes
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Analysis Tools usage of asymptotic notation

Logarithmic Function in Asymptotic Notation
Claim: base does not matter for logarithmic function
For any a > 1, b > 1, if f (n) = Θ(loga n), then f (n) = Θ(logb n).

Proof
• f (n) = Θ(loga n): ∃(c1 > 0, c2 > 0, n0 > 0)

such that c1loga n ≤ f (n) ≤ c2loga n for n ≥ n0.
• Then, c1 · loga b · logb n︸ ︷︷ ︸

loga n

≤ f (n) ≤ c2 · loga b · logb n for n ≥ n0.

• Note that loga b > 0 because a > 1 and b > 1.
• Let c′

1 = c1loga b > 0, c′
2 = c2loga b > 0, n′

0 = n0 > 0. Then,
(n′

0, c
′
1, c

′
2) witnesses

c′
1logb n ≤ f (n) ≤ c′

2logb n

for n ≥ n′
0, thus proving f (n) = Θ(logb n).

base does not matter in Θ(log n)
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Analysis Tools usage of asymptotic notation

Exponential Function in Asymptotic Notation
Claim: base does not matter for logarithmic function
For any a > b > 1 with , if f (n) = Θ(an), then f (n) ̸= Θ(bn).

Proof
• (prove by contradiction)

First, assume that f (n) = Θ(an) AND f (n) = Θ(bn).
• Then, by definition,

• ∃(c1 > 0, c2 > 0, n0 > 0) such that c1an ≤ f (n) ≤ c2an for n ≥ n0.

• ∃(c′
1 > 0, c′

2 > 0, n′
0 > 0) such that c′

1bn ≤ f (n) ≤ c′
2bn for n ≥ n′

0.

• Thus, for arbitrarily big n ≥ max(n0, n′
0), c1an ≤ f (n) ≤ c′

2bn

• Take log on both sides: log c1 + n log a ≤ log c′
2 + n log b, which

implies that n ≤ log c′2−log c1
log a−log b because a > b.

• That is, n cannot be arbitrarily big. CONTRADICTION!

base matters in Θ(an)
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Analysis Tools usage of asymptotic notation

Analysis of Sequential Search

Seq-Search(A, key)

1 n = A. length
2 for i = 1 to n
3 // return when found
4 if A[i] equals key
5 return i
6 return nil

• best case (i.e. key at A[1]): T (n) = Θ(1)
—lines 1-5 executed once with constant time d1 to d5, remember? :-)

• worst case (i.e. return nil): T (n) = Θ(n)
—lines 2 for n+1 times, lines 3-4 for n times, others constant

often # of loop iterations dominates!

25/28



Analysis Tools usage of asymptotic notation

Analysis of Binary Search

Bin-Search(A, key , ℓ, r)

1 while ℓ ≤ r
2 m = floor((ℓ+ r)/2)
3 if A[m] equals key
4 return m
5 elseif A[m] > key
6 r = m − 1 // cut out end
7 elseif A[m] < key
8 ℓ = m + 1 // cut out begin
9 return nil

for n = r − ℓ+ 1
• best case (i.e. key at first m): T (n) = Θ(1)
• worst case (i.e. return nil): T (n) = Θ(log2 n) because

T (n) = T (⌈n−1
2 ⌉) + ‘constant’

often care more about worst case, as mentioned
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Analysis Tools usage of asymptotic notation

Fun Time
What is the time complexity of Get-Min on an array A of length n?

Get-Min(A)

1 m = 1 // store current min. index
2 for i = 2 to A. length
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return A[m]

1 Θ(1)

2 Θ(log n)

3 Θ(n)

4 Θ(n2)

Reference Answer: 3

The loop (including ending check) in line 2 is run
n times (regardless of the best case or the worst
case), remember? :-)
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Analysis Tools usage of asymptotic notation

Summary

Lecture 3: Analysis Tools
motivation

roughly quantify time/space complexity (efficiency)

cases of complexity analysis
often focus on worst-case with ‘rough’ notations

asymptotic notation
rough comparison of function for large n

usage of asymptotic notation
describe f (n) for time or space by simpler g(n)

• next: more asymptotic notations for realistic use
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