Data Structures and Algorithms
BHAH ARSI F k)

Lecture 3: Analysis Tools

Hsuan-Tien Lin (#k#F &)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(B2 68X EANIAEA)

TN
% @
& 5

&y’

Hsuan-Tien Lin (NTU CSIE) Data Structures and Algorithms 0/28

htlin@csie.ntu.edu.tw

Analysis Tools

Roadmap
© the one where it all began

Lecture 2: Data Structures

scheme of purposefully organizing data with
access/maintenance algorithms, such as
ordered array for faster search

o

Lecture 3: Analysis Tools

e motivation

@ cases of complexity analysis
e asymptotic notation

@ usage of asymptotic notation

® the data structures awaken

@® fantastic trees and where to find them
© the search revolutions

@ sorting: the final frontier

1/28

motivation

Analysis Tools motivation

Recall: Properties of Good Program

good program: proper use of resources

Space Resources Computation Resources

® memory CPU(s)

e disk(s) GPU(s)

® transmission bandwidth computation power
—space complexity —time complexity

need: language for describing complexity)

3/28

Analysis Tools motivation

(Extra-)Space Complexity of Get-Min

Get-Min(A)
1 m = 1 // store current min. index

2 fori = 2to A.length

3 // update if i-th element smaller
4 if Alm] > A[i]

5 m=

6 return A[m|

e array A: pointer size sop and n = A.length elements
—extra-space complexity: not counting the input data

* integer m: size s
e integer i: size sq

total space 2s;: constant to n J

4/28

Analysis Tools motivation

Space Complexity of Get-Min-Waste

Get-Min-Waste(A)

1 B = Copy(A, 1, A.length)
2 Insertion-Sort(B)

3 return B[1]

° afray-A-pointersize-sgand-n—Alengih-elements
® array B:

® pointer size sy

® nintegers with total size s; - n, where n = A.length

e any space that Insertion-Sort uses: O

total space sy + s1n+ 0O: (at least) linear to n J

5/28

Analysis Tools motivation

Time Complexity of Insertion Sort

Insertion-Sort(A) cost number of times
1 form = 2to A.length ay n
2 key = A[m] ab n—A1
3 // insert Alm] into the sorted 0 n—1

sequence A[1..m — 1]
4 i=m-—1 ay n—1
5 while i > 0 and A[i] > key ds S otm
6 Ali+1] = A[] ds S o(tn — 1)
7 i=i—1 d mo(tm—1)
8 Ali +1] = key ds n—1

(from Introduction to Algorithms Third Edition, Cormen at al.)

total time T(n)
= dint(n—1)+d(n—1)+0d> tntd Y (tn—1)+d > (tm—1)+d(n—1)

m=2 m=2 m=2

actual time d, depends on machine type;
total T(n) depends on n and t,, number of while checks J

6/28

Analysis Tools motivation

Fun Time

Consider running Get-Min on an array A of length n. If line i takes a
time cost of d;, and the inequality in line 4 is TRUE for t times, what

is the time complexity of Get-Min?

Get-Min(A) O d +do+dy+ 05+ dg

1 m = 1/ store current min. index

2 fori = 2to A.length 9 d1 + td2 + td4 + l'd5 + de

3 // update if i-th element smaller ® di + nd> + tdy + tds + dg

4 if Al/m] > A[f]

5 m=i O di +ndo+ (n—1)ds + tds + ds
6 return A[m]

7/28

Analysis Tools motivation

Fun Time

Consider running Get-Min on an array A of length n. If line i takes a

time cost of d;, and the inequality in line 4 is TRUE for t times, what
is the time complexity of Get-Min?

Get-Min(A) © di + 0o+ dy+ 5+ b

1 m = 1 // store current min. index

2 fori = 2to A.length © di + td> + tdy + tds + s

3 // update if i-th element smaller 9 d1 u nd2 + td4 + Td5 + dG

4 if Alm] > A[i]

5 m=i O di +ndo+ (n—1)ds + tds + ds
6 return A[m]

Reference Answer: @

The loop (including ending check) in line 2 is run
n times; the condition in line 4 is checked n — 1
times, and t of those result in execution of line 5.

7/28

cases of complexity analysis

)

Analysis Tools cases of complexity analysis

Best-case Time Complexity of Insertion Sort

Insertion-Sort(A) cost number of times

1 form = 2to A.length ay n

2 key = Alm] a n—A1

3 / insert Alm] into the sorted 0 n—1
sequence A[1..m — 1]

4 i=m-—1 dy n—1

5 while i > 0 and A[i] > key ds > o tm

6 Ali +1] = A[] o ha(tn—1)

7 j=i—1 & S o (tm — 1)

8 Ali +1] = key ag n—A1

(from Introduction to Algorithms Third Edition, Cormen at al.)

sorted A— ty = 1
T(n)

hn+d(n—1)+ds(n—1)+0> tm+ds D (tn—1)+0 > (tm—1)+ds(n—1)

m=2 m=2 m=2

d1n+d2(n—1)+d4(n—1)+d5(n—1)+d6(0)+d7(0)+d8(n—1)

best case: T(n) = M- n+ ¢ (linear to n) J

9/28

Analysis Tools cases of complexity analysis

Worst-case Time Complexity of Insertion Sort

Insertion-Sort(A) cost number of times
1 form = 2to A.length dy n
2 key = Alm] > n—A1
3 / insert Alm] into the sorted 0 n—1

sequence A[1..m — 1]
4 i=m-—1 dy n—1
5 while i > 0 and A[i] > key ds oo tm
6 Ali +1] = Al Os e o(tm—1)
7 i=i—1 o S (tm—1)
8 Ali +1] = key ag n—A1

(from Introduction to Algorithms Third Edition, Cormen at al.)

reverse-sorted A =— tn = m
T(n)

d1n—|—d2(n—1)+d4(n—1)+d5itm+d5i(tm—1)+d7i(tm—1)+d8(n—1)

m=2 m=2 m=2

dhn+ do(n — 1) + dy(n — 1) + os({EBL=) 4 dg(2n-1) 4 oy (21 4 g (n — 1)

o

worst case: T(n) = % - n* + B - n+ ¢ (quadratic to n) J

10/28

Analysis Tools cases of complexity analysis

Average-case Time Complexity of Insertion Sort

other cases
A= [1,2,4,3]
other cases
best cases A=[1,4,2,3]
A= [473, 2, 1]

A=[1,23,4]
other cases
A= [4,3, 1,2]

best case < average case < worst case J

11/28

Analysis Tools cases of complexity analysis

Time Complexity Analysis in Practice

[Common Focus il Common Language

worst-case time complexity

® physically meaningful:
longest wait time/
max. power consumption

¢ often ~ average: when
enough near-worst-cases

rough time needed
w.r.t. input size n

T(n)=-r*+MW-n+ ¢

® care more about

® largern

® |eading term of n
e care less about

® constants
® other terms of n

next: language of rough notation J

12/28

Analysis Tools cases of complexity analysis

Fun Time

Which of the following describes the best-case time complexity of

Get-Min on an array A of length n?

Get-Min(A)

1 m = 1 // store current min. index
2 fori = 2to A.length

3 // update if i-th element smaller
4 if Alm] > A[f]

o) m=i

6 return A[m]

© constantto n

® linearton

® quadratic to n

@ none of the other choices

13/28

Analysis Tools cases of complexity analysis

Fun Time

Which of the following describes the best-case time complexity of

Get-Min on an array A of length n?

Get-Min(A) @ constantto n
1 m = 1 // store current min. index ;
2 fori = 2to A.length 9 linear to n
3 // update if i-th element smaller © quadratic to n
4 if Alm] > A[i]
5 m=i @ none of the other choices
6 return A[m]
v

Reference Answer: @

Even in the best case, where line 5 is executed 0
times, the loop (including ending check) in line 2
still needs to be run ntimes, and the condition in
line 4 still needs to be checked n — 1 times.

13/28

asymptotic notation

Analysis Tools asymptotic notation

‘Rough’ Notation

_

care more about

® larger n
rou,%hly 2 ® |eading term of n

e care less about

® constants
® other terms of n

2 _ 2
* - n +l-n+0—@(\n/)
f(n) a(n)

*-P+m-n+ ¢

for positive f(n) and g(n) [when n € R with n > 1]

extracting the similarity: consider f((”)) J

15/28

Analysis Tools asymptotic notation

Modeling Roughly with Asymptotic Behavior

*n2+‘r.n+.:e(\ni)
f(n) a(n)

e growth of B - n + ¢ slower than g(n) = n?:
for large n, removable by dividing g(n)

® asymptotically, two functions only differ by ¢ > 0

lim M:c

n—o0 g(n)

—why needing ¢ > 07

‘rough’ definition ver. 0 (to be changed):

for positive f(n) and g(n), f(n) = ©(g(n))
i limn o0 2% = ¢ > 0

16/28

Analysis Tools asymptotic notation

Asymptotic Notation

f(n) = ©(g(n)) < nli%ngO ;(n) =c>0

©: f(n) grows roughly the same as g(n)
definition meets criteria:

care about larger n: yes, n— oo
leading term more important than other terms:

yes, n++/n+ logn=0(n)

insensitive to constants: yes, 1126n = ©(n)

“= O(-)” actually “€”
| v/n| 0.1126n + 6.211 |

n :
is ©(n)? | X | O O] O | X | X

asymptotic notation: ‘language’ for time/space complexity J

17/28

Analysis Tools asymptotic notation

Issue about the Convergence Definition

f(n) = ©(g(n)) <= lim Hn) =c>0

n—oo g(n)

e consider a hypothetical
algorithm:

® T(n) = nforeven n
® T(n)=2nforodd n
e want: T(n) = ©(n)
i)

(] but ||mn_>oo n M_
does not exist! J |, -
LAY

fixed (formal) definition ver. 1:
for asymptotically non-negative f(n) and g(n),

f(n) = ©(g(n)) if and only if there exists positive (ng, c1, c2)
such that ¢ig(n) < f(n) < cxg(n) forall n > ng

18/28

Analysis Tools asymptotic notation

Convergence Condition = Formal Definition
Theorem: For asymptotically non-negative functions f(n) and g(n),

if limp_ 00 % = ¢ (convergence condition),

then f(n) = ©(g(n)) (formal definition).

v

® definition of lim,_,: for all ¢ > 0, there exists n. > 0 such that for all

f(—n—C’<6

N> ne, | 5

® chooseany ¢’ >0,andletny=ns+1,¢ci =c—¢,c,=c+¢

e thenforalln>n), c—¢€ < ((n)) < c+ €, thatis,

ci-g(n) < f(n) < cz.g(n)

* witness (ng, ¢/, c5) proves f(n) = ©(g(n))

often suffices to use convergence condition in practice

J

19/28

Analysis Tools asymptotic notation

Fun Time

For asymptotically non-negative functions f(n) and g(n), which of

the following condition is sufficient for stating f(n) = ©(g(n))?

O limy_ % = ¢ for some constant ¢ > 0
@ there is (no, 1, ¢2) such that c1g(n) < f(n) < cag(n) for all n > ny
® g(n) = 6(f(n))

@ all of the other choices

20/28

Analysis Tools asymptotic notation

Fun Time

For asymptotically non-negative functions f(n) and g(n), which of

the following condition is sufficient for stating f(n) = ©(g(n))?

O limy_ % = ¢ for some constant ¢ > 0
@ there is (no, 1, ¢2) such that c1g(n) < f(n) < cag(n) for all n > ny
® g(n) = 6(f(n))

@ all of the other choices

Reference Answer: @

@ is the convergence condition;
@ is the formal definition of ©;

@ can be proved by converting
the witness (ng, c1, ¢2) for g(n) = ©(f(n)) to
the witness (o, &, 2-) for f(n) = ©(g(n)).

o

20/28

usage of asymptotic notation

Analysis Tools

usage of asymptotic notation

popular choices

The Seven Functions as g(n)

g(n) = 1: constant

—meaning ¢; < f(n) < ¢ forn > ny
g(n) = log n: logarithmic

—does base matter?

g(n) =

g(n) = nlogn

g(n) = n?: square

g(n) = n®: cubic

g(n) = 2": exponential

—does base matter?

will often encounter them in future classes

22/28

Analysis Tools usage of asymptotic notation

Logarithmic Function in Asymptotic Notation

Claim: base does not matter for logarithmic function
Forany a > 1, b > 1, if f(n) = ©(log, n), then f(n) = ©(log, n).

f(n) = ©(log,n): 3(cy > 0,c2 > 0,9 > 0)
such that cilog, n < f(n) < colog, nfor n > ny.

Then, ¢1 - log b - logyn < f(n) < ¢z - log, b - log, nforn > ng.
T
Note that log, b > 0 because a > 1 and b > 1.
Let ¢ = cilog, b >0, ¢, = colog, b > 0, my = ng > 0. Then,
(nj, ¢}, c5) witnesses
cilog, n < f(n) < chlogy n

for n > nj, thus proving f(n) = ©(logy, n).

base does not matter in ©(log n) J

23/28

Analysis Tools usage of asymptotic notation

Exponential Function in Asymptotic Notation

Claim: base does not matter for logarithmic function
Forany a > b > 1 with , if f(n) = ©(a"), then f(n) # ©(b").

(prove by contradiction)
First, assume that f(n) = ©(a") AND f(n) = ©(b").
Then, by definition,
I(cr > 0,00 >0,nm >0) suchthat c¢a” <f(n) <cya’forn> no.
3(c; > 0,¢, >0,ny >0) suchthat c[b” < f(n) < csb” forn> nj.

Thus, for arbitrarily big n > max(no, ny), ci1a” < f(n) < c4b”
Take log on both sides: log ¢y + nlog a < log ¢, + nlog b, which
implies that n < % because a > b.

That is, n cannot be arbitrarily big. CONTRADICTION!

base matters in ©(a") J

24/28

Analysis Tools usage of asymptotic notation

Analysis of Sequential Search

Seq-Search(A, key)

1 n = A length

2 fori=1ton

3 // return when found
4 if A[i] equals key

5 return j

6 return nil

® best case (i.e. key at A[1]): T(n) = ©(1)
—lines 1-5 executed once with constant time d; to ds, remember? :-)

® worst case (i.e. return nil): T(n) = ©(n)
—lines 2 for n+1 times, lines 3-4 for n times, others constant

often # of loop iterations dominates! J

25/28

Analysis Tools usage of asymptotic notation

Analysis of Binary Search

Bin-Search(A, key, ¢, r)
1 whilel<r

2 m = floor((¢ + r)/2)

3 if Al/m] equals key

4 return m

5 elseif A[m] > key

6 r=m—1// cut out end
7 elseif A[m] < key

8 ¢ = m+ 1 // cut out begin
9 return nil

® best case (i.e. key at first m): T(n) = ©(1)
e worst case (i.e. return nil): T(n) = ©(log, n) because

T(n) = T([%]) + ‘constant’

often care more about worst case, as mentioned J

26/28

Analysis Tools usage of asymptotic notation

Fun Time

What is the time complexity of Get-Min on an array A of length n?

Get-Min(A)

1 m = 1 // store current min. index
2 fori = 2to A.length

3 // update if i-th element smaller
4 it Alm] > A[i]

5) m=i

6

return A{m]

© o(1)
® O(logn)
® O(n)
O 9(n?)

—_ o~ o~

27/28

Analysis Tools usage of asymptotic notation

Fun Time

What is the time complexity of Get-Min on an array A of length n?

Get-Min(A) (1] @(1)
1 m = 1 // store current min. index
2 fori = 2to A.length 9 @(Iog n)
3 // update if i-th element smaller 9 @(n)
4 if Alm] > A[f]
5 m=i (4] e(nZ)
6 return Alm]
v

Reference Answer: @

The loop (including ending check) in line 2 is run
n times (regardless of the best case or the worst
case), remember? :-)

27/28

Analysis Tools usage of asymptotic notation

Summary

Lecture 3: Analysis Tools

e motivation
roughly quantify time/space complexity (efficiency)

@ cases of complexity analysis

often focus on worst-case with ‘rough’ notations
e asymptotic notation

rough comparison of function for large n
@ usage of asymptotic notation

describe f(n) for time or space by simpler g(n)

¢ next: more asymptotic notations for realistic use

28/28

	Analysis Tools
	motivation
	cases of complexity analysis
	asymptotic notation
	usage of asymptotic notation

