
Data Structures and Algorithms
(資料結構與演算法)
Lecture 2: Data Structure

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering

National Taiwan University
(國立台灣大學資訊工程系)

Hsuan-Tien Lin (NTU CSIE) Data Structures and Algorithms 0/26

htlin@csie.ntu.edu.tw

Data Structure

Roadmap
1 the one where it all began

Lecture 1: Algorithm
clearly-illustrated instructions to

provably solve a computational task

Lecture 2: Data Structure
definition of data structure
ordered array as data structure
Get (search) in ordered array
why data structures and algorithms

2 the data structures awaken

3 fantastic trees and where to find them

4 the search revolutions

5 sorting: the final frontier

1/26

definition of data structure

Data Structure definition of data structure

From Cloth Structure to Data Structure

Cloth Structure: Ordered

(copyright purchased from iStock)

Cloth Structure: Messy

(copyright purchased from iStock)

Data Structure: Sorted Data Structure: Unsorted

data structure: scheme of organizing data within computer

3/26

Data Structure definition of data structure

Good Algorithm Needs Proper Data Structure

Selection-Sort with Get-Min-Index, remember? :-)

Selection-Sort(A)

1 for i = 1 to A. length
2 m = Get-Min-Index(A, i,A. length))
3 if i ̸= m
4 Swap(A[i],A[m])
5 return A // which has been sorted in place

Get-Min-Index(A, ℓ, r)

1 m = ℓ // store current min. index
2 for i = ℓ+ 1 to r
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

if having data structure with faster Get-Min-Index,
=⇒ Selection-Sort also faster (to be taught)

algorithm :: data structure
∼ recipe :: ingredient structure

4/26

Data Structure definition of data structure

Data Structure Needs Accessing Algorithms

Get
• Get-By-Index(...): for arrays
• Get-Next(...): for sequential

access
• Get(data): for search
• . . .

—generally assume to
read without deleting

Insert
• Insert-By-Index(...): for arrays
• Insert-After(...): for sequential

access
• Insert(data)
• . . .

—generally assume to
add without overriding

‘philosophical’ rule of thumb (to be taught):
often-Get ⇐⇒ Insert “nearby”

5/26

Data Structure definition of data structure

Data Structure Needs Maintenance Algorithms

Construct
• baseline: with

multiple Insert
• often faster if

designed
carefully &
strategically

Remove
• often viewed as

deleting after
Get

• ∼ UnInsert:
often harder
than Insert

Update
• usually possible

with Remove +
Insert

• can be viewed
as Insert with
overriding

hidden cost of data structure:
maintenance effort (especially Remove & Update)

6/26

Data Structure definition of data structure

Fun Time
Which of the following can be viewed as the reverse algorithm of
Insert within a data structure?

1 Construct
2 Get
3 Remove
4 Update

Reference Answer: 3

Remove-ing an item from the data structure
essentially takes out what has been Insert-ed.

7/26

Data Structure definition of data structure

Fun Time
Which of the following can be viewed as the reverse algorithm of
Insert within a data structure?

1 Construct
2 Get
3 Remove
4 Update

Reference Answer: 3

Remove-ing an item from the data structure
essentially takes out what has been Insert-ed.

7/26

ordered array as data structure

Data Structure ordered array as data structure

Definition of Ordered Array

A. length = 4
1 2 3 4 5 6

A[1] A[2] A[3] A[4]

an array of consecutive elements with ordered values

9/26

Data Structure ordered array as data structure

Insert of Ordered Array

Swap Version
Insert(A, data)

1 n = A. length
2 A. [n + 1] = data // put in the back
3 for i = n downto 1
4 if A[i + 1] < A[i]
5 Swap(A[i],A[i + 1]) // cut in
6 else
7 return

1 2 3 4 5

orig.

i = 4

i = 3

return

Direct Cut-in Version
Insert(A, data)

1
2 i = A. length
3 while i > 0 and A[i] > data
4 A[i + 1] = A[i]
5 i = i − 1
6 A[i + 1] = data
7

1 2 3 4 5

orig.

i = 4

i = 3

return

Insert of ordered array: cut in from back

10/26

Data Structure ordered array as data structure

Construct of Ordered Array

Selection-Sort, remember? :-)

Selection-Sort(A)

1 for i = 1 to A. length
2 m = Get-Min-Index(A, i,A. length))
3 if i ̸= m
4 Swap(A[i],A[m])
5 return A

Get-Min-Index(A, ℓ, r)

1 m = ℓ // store current min. index
2 for i = ℓ+ 1 to r
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

or Insertion-Sort
Insertion-Sort(A)

1 for i = 1 to A. length
2 Insert(A, i)
3
4
5 return A

Insert(A,m)

1 data = A[m]
2 i = m − 1
3 while i > 0 and A[i] > data
4 A[i + 1] = A[i]
5 i = i − 1
6 A[i + 1] = data

Insertion-Sort: Construct with multiple Insert

11/26

Data Structure ordered array as data structure

Remove and Update of Ordered Array

Remove
Remove(A,m)

1 i = m + 1
2 while i ≤ A. length
3 A[i − 1] = A[i] // fill in
4 i = i + 1
5 A. length = A. length − 1

Update
Update(A,m, data)

1 i = m
2 if A[i] > data // cut in to front
3 i = i − 1
4 while i > 0 and A[i] > data
5 A[i + 1] = A[i]
6 i = i − 1
7 A[i + 1] = data
8 else // cut in to back
9 ... complete on your own ...

ordered array: more maintenance efforts than unordered
=⇒ faster Get (?)

12/26

Data Structure ordered array as data structure

Fun Time
Consider the direct cut-in version of Insert. Assume that some data
is inserted to an array A with A. length = 6211 (prior to insertion)
and ends up in position A[1126]. How many comparisons of the
form A[i] > data has been conducted?

Insert(A, data)

1 i = A. length
2 while i > 0 and A[i] > data
3 A[i + 1] = A[i]
4 i = i − 1
5 A[i + 1] = data

1 1126

2 5087

3 6211

4 7337

Reference Answer: 2

When data ends up in position A[1126],
6212 − 1126 elements are larger than data
(pushed back within while). Another comparison
with A[1125] terminates while. So the total is
6212 − 1126 + 1 = 5087.

13/26

Data Structure ordered array as data structure

Fun Time
Consider the direct cut-in version of Insert. Assume that some data
is inserted to an array A with A. length = 6211 (prior to insertion)
and ends up in position A[1126]. How many comparisons of the
form A[i] > data has been conducted?

Insert(A, data)

1 i = A. length
2 while i > 0 and A[i] > data
3 A[i + 1] = A[i]
4 i = i − 1
5 A[i + 1] = data

1 1126

2 5087

3 6211

4 7337

Reference Answer: 2

When data ends up in position A[1126],
6212 − 1126 elements are larger than data
(pushed back within while). Another comparison
with A[1125] terminates while. So the total is
6212 − 1126 + 1 = 5087.

13/26

Get (search) in ordered array

Data Structure Get (search) in ordered array

Application: Book Search within (Digital) Library

figure by LaiAndrewKimmy,

licensed under CC BY-SA 3.0 via Wikimedia Commons

Get book with ID as key in ordered array

15/26

Data Structure Get (search) in ordered array

Sequential Search Algorithm for Any Array

1 2 3 4 5 6 7
original

i = 1

i = 2

i = 3

i = 4

Seq-Search(A, key , ℓ, r)

1
2 for i = ℓ to r
3 // return when found
4 if A[i] equals key
5 return i
6 return nil

Get-Min-Index(A, ℓ, r)

1 m = ℓ // store current min. index
2 for i = ℓ+ 1 to r
3 // update if i-th element smaller
4 if A[m] > A[i]
5 m = i
6 return m

Seq-Search: structurally similar to Get-Min-Index

16/26

Data Structure Get (search) in ordered array

Ordered Array: Sequential Search with Shortcut
1 2 3 4 5 6 7

original

i = 1

i = 2

i = 3

i = 4

i = 5

Seq-Search-Shortcut(A, key , ℓ, r)

1 for i = ℓ to r
2 // return when found
3 if A[i] equals key
4 return i
5 elseif A[i] > key
6 return nil
7 return nil

Seq-Search(A, key , ℓ, r)

1 for i = ℓ to r
2 // return when found
3 if A[i] equals key
4 return i
5
6
7 return nil

ordered: possibly easier to declare nil

17/26

Data Structure Get (search) in ordered array

Ordered Array: Binary Search Algorithm
1 2 3 4 5 6 7

original

[ℓ, r] = [1, 7]

[ℓ, r] = [5, 7]

[ℓ, r] = [5, 5]

Bin-Search(A, key , ℓ, r)

1 while ℓ ≤ r
2 m = floor((ℓ+ r)/2)
3 if A[m] equals key
4 return m
5 elseif A[m] > key
6 r = m − 1 // cut out end
7 elseif A[m] < key
8 ℓ = m + 1 // cut out begin
9 return nil

Seq-Search-Shortcut(A, key , ℓ, r)

1 for i = ℓ to r
2 // return when found
3 if A[i] equals key
4 return i
5 elseif A[i] > key
6 return nil
7
8
9 return nil

Bin-Search: multiple shortcuts
by quickly checking the middle

18/26

Data Structure Get (search) in ordered array

Binary Search in Open Source

Bin-Search(A, key , ℓ, r)

1 while ℓ ≤ r
2 m = floor((ℓ+ r)/2)
3 if A[m] equals key
4 return m
5 elseif A[m] > key
6 r = m − 1 // cut out end
7 elseif A[m] < key
8 ℓ = m + 1 // cut out begin
9 return nil

“must-know” for programmers

java.util.Arrays
private static int

binarySearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;

while (low <= high) {
int mid =

(low + high) >>> 1;
int midVal = a[mid];

if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid;

// key found
}
return -(low + 1);

// key not found.
}

19/26

Data Structure Get (search) in ordered array

Fun Time
Consider running the Bin-Search algorithm on an ordered array of
size 15 with some key that is not in the array. How many
comparisons does Bin-Search take before returning nil?

1 1

2 2

3 4

4 15

Reference Answer: 3

The first comparison is a shortcut that leaves only
7 remaining elements; the second leaves 3; the
third leaves 1; the fourth eliminates all
possibilities.

20/26

Data Structure Get (search) in ordered array

Fun Time
Consider running the Bin-Search algorithm on an ordered array of
size 15 with some key that is not in the array. How many
comparisons does Bin-Search take before returning nil?

1 1

2 2

3 4

4 15

Reference Answer: 3

The first comparison is a shortcut that leaves only
7 remaining elements; the second leaves 3; the
third leaves 1; the fourth eliminates all
possibilities.

20/26

why data structures and algorithms

Data Structure why data structures and algorithms

Why Data Structures and Algorithms?
good program: proper use of resources

Space Resources
• memory
• disk(s)
• transmission bandwidth

—usually cared by data structure

Computation Resources
• CPU(s)
• GPU(s)
• computation power

—usually cared by algorithm

Other Resources
• manpower
• budget

—usually cared by management

data structures and algorithms: for writing good program

22/26

Data Structure why data structures and algorithms

Proper Use: Trade-off of Different Factors

faster Get ⇐⇒ slower Insert
and/or maintenance

more space ⇐⇒ faster computation

harder to implement/debug ⇐⇒ faster computation

good program needs understanding trade-off

23/26

Data Structure why data structures and algorithms

Programming ̸= Coding

programming :: building house ∼ coding :: construction work

Introduction to C Data Structures and Algorithms
requirement simple simple

analysis simple simple
design simple ⋆
coding ⋆
proof none
test simple ⋆

debug ⋆

data structures and algorithms:
moving from coding to programming

24/26

Data Structure why data structures and algorithms

Fun Time
Which of the following is a property of an ordered array when
compared with an unordered one with the same number of
elements?

1 faster Get
2 faster Insert
3 more space

4 none of the other choices

Reference Answer: 1

An ordered array allows faster Get by
Bin-Search.

25/26

Data Structure why data structures and algorithms

Fun Time
Which of the following is a property of an ordered array when
compared with an unordered one with the same number of
elements?

1 faster Get
2 faster Insert
3 more space

4 none of the other choices

Reference Answer: 1

An ordered array allows faster Get by
Bin-Search.

25/26

Data Structure why data structures and algorithms

Summary

Lecture 2: Data Structure
definition of data structure

organize data with access/maintenance algorithms

ordered array as data structure
insert by cut-in, remove by fill-in

Get (search) in ordered array
binary search using order for shortcuts

why data structures and algorithms
study trade-off to move from coding to programming

• next: tools for analyzing/studying trade-off

26/26

	Data Structure
	definition of data structure
	ordered array as data structure
	Get (search) in ordered array
	why data structures and algorithms

