Data Structures and Algorithms
(A AR ARSI R Bk)

Lecture 1: Algorithm
Hsuan-Tien Lin (#x$f &)

htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering
National Taiwan University
(B26HRETNIER)

Hsuan-Tien Lin (NTU CSIE) Data Structures and Algorithms 0/30

htlin@csie.ntu.edu.tw

Algorithm

Roadmap
© the one where it all began

Lecture 1: Algorithm

e definition of algorithm

@ pseudo code of algorithm

e criteria of algorithm

@ correctness proof of algorithm

000

1/30

definition of algorithm

Algorithm definition of algorithm

Name Origin of Algorithm

Muhammad ibn Miisa al-Kwarizmi on a Soviet Union stamp

figure licensed from public domain via

https://commons.wikimedia.org/wiki/File:1983_CPA_5426. jpg

® named after al-Kwarizmi (780—-850), Persian
mathematician and father of algebra

¢ algebra: rules to calculate with symbols

e algorithm: instructions to compute with
variables)

algorithm: recipe-like instructions for computing)

3/30

https://commons.wikimedia.org/wiki/File:1983_CPA_5426.jpg

Algorithm definition of algorithm

Recipe for Cooking Dish

Cookbook: Hamburger

a recipe for hamburger on Wikibooks

figure by Gentgeen,
licensed under CC BY-SA 3.0 via Wikimedia Commons

Wikipedia: a set of instructions that
describes how to prepare or make
something, especially a dish of prepared
food

recipe: instructions to complete a (cooking) task J

4/30

Algorithm definition of algorithm

Sheet Music for Playing Instrument

v la Latd / LS Bz,

first page of manuscript of Bach’s lute suite in G minor

figure licensed

under public domain via Wikimedia Commons

Wikipedia: handwritten or printed form of
musical notation ... to indicate the pitches,
rhythms or chords of a song

sheet music: instructions to play instrument (well) J

5/30

Algorithm definition of algorithm

Kifu for Playing Go

a Japanese kifu

figure by Velobici,
licensed under CC BY-SA 4.0 via Wikimedia Commons

go game record of steps that describe how
the game had been played

kifu: instructions to mimic/learn to play go (professionally) J

6/30

Algorithm

[

NE EE

ENTRY

Euclid's algorithm for the
greatest common divisor (gcd)
0 numbers

PRINT A

definition of algorithm

Algorithm for Computing

flowchart of Euclid’s algorithm for calculating the greatest common

divisor (g.c.d.) of two numbers

figure by Somepics,
licensed under CC BY-SA 4.0 via Wikimedia Commons

Wikipedia: algorithm is a finite sequence of
well-defined, computer-implementable instructions,
typically to solve a class of problems or to perform a
computation

algorithm ~ computing recipe:

(computable) instructions to solve a computing task

efficiently/correctly

7/30

Algorithm definition of algorithm

Fun Time
Which of the following in the kitchen is the best metaphor for an
algorithm?
© recipe
® chef
® garbage

O meat

8/30

Algorithm definition of algorithm

Fun Time

Which of the following in the kitchen is the best metaphor for an

algorithm?
© recipe
® chef

® garbage
O meat

Reference Answer: @

algorithm ~ computing recipe:
(computable) instructions to solve a computing
task efficiently/correctly

8/30

pseudo code of algorithm

Algorithm pseudo code of algorithm

Pseudo Code for Get-Min-Index

Pseudo Code Version

/* return index to min. element q
in arr[0] arr[len-1] */ Get-Min-Index(A)
int getMinIndex 1 m=1
(int arr[], int len){ 2 fori = 2to A.length
int i; 3 // update if i-th element smaller
int m=0; 4 if Alm] > A[f]
for(i=0;i<len;i++){ 5 m=|
if (arr[m] > arr[il){ 6 return m
m = ij;
}
}
return m;
¥
< y
pseudo code: spoken language of programming J

10/30

Algorithm

1
2

3
4
5
6
7
8
9
0

1

pseudo code of algorithm

Bad Pseudo Code: Too Detailed

Unnecessarily Detailed [Concise |

Get-Min-Index(A)

m=1
for i = 2to A. length
// update if j-th element smaller
Am = A[m]
Ai = Alf]
if Am > Ai
m=1i
else
m=m
return m

Get-Min-Index(A)
1 m=1

2 fori = 2to A.length

3 // update if i-th element smaller
4 if Alm] > A[f]

5 m=i

6 returnm

goal of pseudo code: communicate efficiently

11/30

Algorithm pseudo code of algorithm

Bad Pseudo Code: Too Mysterious

Unnecessarily Mysterious W Clear |

Get-Min-Index(A) Get-Min-Index(A)

1 %=1 1 m = 1 // store current min. index
2 for xx = 2to A.length 2 fori = 2to A.length

3 3 // update if i-th element smaller
4 if A[x] > A[xx] 4 it Alm] > A[i]

5 XX = X 5 m=

6 return xx 6 return m

goal of pseudo code: communicate correctly

12/30

Algorithm pseudo code of algorithm

Bad Pseudo Code: Too Abstract

Unnecessarly Absiract % Conorete

Get-Min-Index(A)
1 m = 1 // store current min. index
2 run a loop through A

that updates m in every iteration
3 returnm

Get-Min-Index(A)

1 m = 1 // store current min. index

2 fori = 2to A.length

3 // update if i-th element smaller
4 if Alm] > A[f]

5 m=

6 returnm

goal of pseudo code: communicate effectively

13/30

Algorithm

pseudo code of algorithm

From Get-Min-Index to Selection-Sort

Get-Min-Index(A, ¢, r)

1
2
3

4
5
6

m = £ // store current min. index
fori=¢+1tor

// update if i-th element smaller

if Alm] > A[i]
m=i
return m

@)

@

@@ .
gi @0 |@

?
©

Get-Min-Index

@)

m

?
©

©)E) “
.

@E

e

Good Pseudo Code

modularize, just like coding
depends on speaker/listener
usually no formal definition

W

Selection-Sort(A)

for i = 1to A.length
m = Get-Min-Index(A, i, A. length))
if i = m

Swap(A[1], Alm])

return A / which has been sorted in place

follow any textbook if you really need a definition J

14/30

Algorithm

pseudo code of algorithm

Quick Demo of Selection Sort

Selection-Sort(A)

1 fori = 1to A.length

2

Get-Min-Index(A, ¢, r)

1 m = £/ store current min. index
m = Get-Min-Index(A, i, A. length)) 2 fori=¢+1tor
3 ifi#m 3 // update if i-th element smaller
4 Swap(A[i], Alm]) 4 if Al/m] > A[i]
5 return A / which has been sorted in place 5 m=i
6 6 returnm
instructions Al2] A[3] A[4] A[5] Al6]
m <& Get-Min-Index(A, 1, 6) @ oo [
® oo 3
Swap(A[1], A[2]) o=

mé& Get-Min-Index(A, 2, 6)

)

me Get-Min-Index(A, 3, 6)
Swap(A[3], A[5])

m < Get-Min-Index(A, 4, 6)
Swap(A[4], A[5])

o) | () | oo |)

m < Get-Min-Index(A, 5, 6)

b

m <& Get-Min-Index(A, 6, 6)

)

0| 09)|09] (0] 8 | =
||| o o
&8 | &

C N OICDIES IETES]

suggestion:

, don’t just watch

15/30

Algorithm pseudo code of algorithm

Fun Time

Which of the following can be used to describe good pseudo code?
© clear

® concise
® concrete
@ all of the above

16/30

Algorithm pseudo code of algorithm

Fun Time

Which of the following can be used to describe good pseudo code?
© clear

® concise
® concrete
@ all of the above

Reference Answer: @

Have fun communicating with other programmers
using good pseudo code! :-)

16/30

criteria of algorithm

Algorithm criteria of algorithm

Criteria of Recipe

® input:
ingredients

® definiteness:

figure by Larry, licensed under CC BY-NC-ND 2.0 via Flickr Clear instructions

e effectiveness:

Cocktail Recipe: feasible instructions

Screwdriver (from Wikipedia)
inputs: 5 cl vodka, 10 cl orange juice

e finiteness:

0 mix inputs in a highball glass with ice completable instructions

@ gamnish with orange slice and serve ® output:
output: a glass of delicious cocktail delicious drink

algorithm ~ recipe: same five criteria for algorithm
(Knuth, The Art of Computer Programming)

18/30

Algorithm criteria of algorithm

Input of Algorithm

... quantities which are given to it initially before the algorithm begins.

These inputs are taken from specified sets of objects. (Knuth, TAOCP)J

Get-Min-Index(A)

1 m = 1/ store current min. index
2 fori = 2to A.length

3 // update if i-th element smaller
4 if Alm] > A[f]

5 m=i

6 returnm

one algorithm, many uses (on different legal inputs)

J

19/30

Algorithm criteria of algorithm

Definiteness of Algorithm

Each step of an algorithm must be precisely defined; the actions to be
carried out must be rigorously & unambiguously specified. (Knuth, TAOCP)J

Get-Min-Index(A) Get-Zero-Index(A)
1 m = 1 // store current min. index 1
2 fori = 2to A.length 2 fori = 1to A.length
3 // update if i-th element smaller 3
4 if Alm] > A[i] 4 if Alm] is almost zero
) m=i 5 return m
6 return m 6 / what to return here?
v V.

definiteness: clarity of algorithm

20/30

Algorithm criteria of algorithm

Effectiveness of Algorithm

... all of the operations to be performed in the algorithm must be
sufficiently basic that they can in principle be done exactly and in a finite

length of time by a man using paper and pencil. (Knuth, TAOCP)
Get-Min-Index(A) Get-Min-Index-Robot(A)
1 m = 1 // store current min. index 1 m = 1 // store current min. index
2 2 form a ball Bm of weight A[1]
3 fori = 2to A.length 3 fori = 2to A.length
4 // update if i-th element smaller 4 // update if j-th element smaller
5 5 form a ball Bi of weight A[i]
6 if Alm] > A[i] 6 if Bi is lighter than Bm on a balance
7 m=i 7 m=i
8 8 replace Bm with Bi
9 returnm 9 returnm
v v

forming a ball (& other actions) are arguably
ineffective on typical computers J

21/30

Algorithm criteria of algorithm

Finiteness of Algorithm

An algorithm must always terminate after a finite number of steps . . .

a very finite number, a reasonable number. (Knuth,TAOCP)J

Get-Min-Index(A)

1 m = 1 // store current min. index
2 fori = 2to A.length

3 // update if i-th element smaller
4 it Alm] > A[i]

5 m=i

6 returnm

finiteness (& efficiency): often need analysis for sophisticated
algorithms (to be taught later) J

22/30

Algorithm criteria of algorithm

Output of Algorithm

... quantities which have a specified relation to the inputs (Knuth, TAOCP) |

Get-Min-Index(A)

1 m = 1/ store current min. index
2 fori = 2to A.length

8] // update if i-th element smaller
4 if Alm] > A[i]

5 m=

6 returnm

output (correctness): need proving
with respect to requirements J

23/30

Algorithm criteria of algorithm

Fun Time
What best describes the input/output relationship of the selection

sort algorithm below?

© input: an ascending array;
output: the same array
sorted in descending order

@ input: an arbitrary array;
output: the same array
sorted in descending order

® input: an arbitrary array;
output: the same array
sorted in ascending order

@ none of the other choices

Selection-Sort(A)

1 fori = 1to A.length

2 m = Get-Min-Index(A, i, A. length))
3 ifi = m

4 Swap(A[], Alm])

5 return A / which has been sorted in place

24/30

Algorithm criteria of algorithm

Fun Time
What best describes the input/output relationship of the selection

sort algorithm below?
© input: an ascending array;

output: the same array Stellesinaodis)
: : 1 fori = 1to A.length
sorted in descending order | , T T U dex(A, i, A length))
input: an arbitrary array; 3 ifizm
© input: an arbiary anay; | Swap(Al], Alm])
output: the same array 5 return A / which has been sorted in place
sorted in descending order

® input: an arbitrary array;
output: the same array
sorted in ascending order

@ none of the other choices

Reference Answer: @

The selection sort algorithm re-arranges an
arbitrary array into ascending order.

24/30

correctness proof of algorithm

Algorithm correctness proof of algorithm

figure by Nick Youngson, licensed CC BY-SA 3.0 via Picpedia.Org

Correctness of Get-Min-Index
Get-Min-Index(A) " .
1 m = 1/ store current min. index Upon exiting Get-Min-Index(A),
2 fori = 2to A.length
3 // update if i-th element smaller A[m] = min A[/]
4 it Alm] > A[i] 1<j<n
5 m=
& i i with n = A.length

claim: math. statement that declares correctness

26/30

Algorithm correctness proof of algorithm

Invariant

Correctness of Get-Min-Index
Upon exiting Get-Min-Index(A),

Alm] = min A[j]
o . 1<j<n
invariants when constructing fractals
figures by Johannes Rossel,
licensed from public domain via Wikipedia Wlth n= A /ength

Get-Min-Index(4) o Invariant within Get-Min-Index

1 m = 1 // store current min. index — ——

2 fori = 2to A.length Upon finishing the loop with i = Kk,

3 // update if i-th element smaller

. it Alm] > Al denote m by my,

5 m=i

6 return m Almg] < Aljlforj=1,2,... k
(loop) invariant: property that algorithm maintains J

27/30

Algorithm correctness proof of algorithm

Proof of Loop Invariant

Get-Min-Index(A)
when i = 2, invariant true because

1 m = 1 // store current min. index
2 fori = 2to A.length
assume invariant true for i — t — 1 3 // update if i-th element smaller
4 if Alm] > A[f]
when i = t, 5 i
6

m =1
if A[m,_1] > A[t] =>my =1t

return m

v

= A[t < Alt
Almi] < AH?z— al g A[U]] forj < t Correctness of Get-Min-Index

if A[m,_1] < A[t] = Mt = Mi_1 ﬂ
A[mr] = A[m,,1] < A[t]

Invariant within Get-Min-Index
= Almi—1] < A[j]forj<t

Upon finishing the loop with i = k,
= denote m by my,

—by mathematical induction,
invariant true fori = 2,3,...,k

) Almi] < Afjlforj=1,2,...,k

proof of (loop) invariants = correctness claim of algorithm)

28/30

Algorithm correctness proof of algorithm

Fun Time
Which of the following is a loop invariant to selection sort?

Selection-Sort(A)
1 fori = 1to A.length

2 m = Get-Min-Index(A, i, A. length))
3 ifi%m
4 Swap(A[i], Alm])

5 return A / which has been sorted in place

@ Upon finishing the loop with i = k, A[1] > A[2] > ... > A[k].
® Upon finishing the loop with i = k, A[1] < A[2] < ... < A[k].
® Upon finishing the loop with i = k, Ak + 1] > ... > A[A.length].
@ Upon finishing the loop with i = k, Ak + 1] < ... < A[A.length].

29/30

Algorithm correctness proof of algorithm

Fun Time

Which of the following is a loop invariant to selection sort?

Selection-Sort(A)
1 fori = 1to A.length

2 m = Get-Min-Index(A, i, A. length))
3 ifi%m
4 Swap(A[i], Alm])

5 return A / which has been sorted in place

@ Upon finishing the loop with i = k, A[1] > A[2] > ... > A[K].
® Upon finishing the loop with i = k, A[1] < A[2] < ... < A[K].

® Upon finishing the loop with i = k, Alk + 1] > ... > A[A.length].
O Upon finishing the loop with i = k, Alk + 1] < ... < A[A.length].

Reference Answer: @

The selection sort algorithm essentially picks the
smallest element, the 2nd-smallest, and so on,
and place them orderly. You can prove the loop
invariant by mathematical induction.

29/30

Algorithm correctness proof of algorithm

Summary

Lecture 1: Algorithm

o definition of algorithm

instructions to complete a task by computer
o pseudo code of algorithm

communicate efficiently/correctly/effectively
o criteria of algorithm

input, definite, effective, finite, output
o correctness proof of algorithm

from (loop) invariants to claims

e next: data structures and their connections to algorithms

30/30

	Algorithm
	definition of algorithm
	pseudo code of algorithm
	criteria of algorithm
	correctness proof of algorithm

