Lecture 11: Gradient Boosted Decision Tree

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering
National Taiwan University
(國立台灣大學資訊工程系)
Roadmap

1. Embedding Numerous Features: Kernel Models
2. Combining Predictive Features: Aggregation Models
3. Distilling Implicit Features: Extraction Models

Lecture 10: Random Forest
- bagging of randomized C&RT trees with automatic validation and feature selection

Lecture 11: Gradient Boosted Decision Tree
- Adaptive Boosted Decision Tree
- Optimization View of AdaBoost
- Gradient Boosting
- Summary of Aggregation Models
function **RandomForest**(\mathcal{D})
For $t = 1, 2, \ldots, T$

1. request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
2. obtain tree g_t by Randomized-DTree($\tilde{\mathcal{D}}_t$)

return $G = \text{Uniform} (\{g_t\})$
function **RandomForest**(\mathcal{D})
For $t = 1, 2, \ldots, T$
1. request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
2. obtain tree g_t by Randomized-DTree($\tilde{\mathcal{D}}_t$)
return $G = \text{Uniform} \{ g_t \}$

function **AdaBoost-DTree**(\mathcal{D})
For $t = 1, 2, \ldots, T$
1. reweight data by $u^{(t)}$
function **RandomForest**(\mathcal{D})

For $t = 1, 2, \ldots, T$

1. request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
2. obtain tree g_t by Randomized-DTree$(\tilde{\mathcal{D}}_t)$

return $G = \text{Uniform}(\{g_t\})$

function **AdaBoost-DTree**(\mathcal{D})

For $t = 1, 2, \ldots, T$

1. reweight data by $u^{(t)}$
2. obtain tree g_t by DTree$(\mathcal{D}, u^{(t)})$
From Random Forest to AdaBoost-DTree

function $\text{RandomForest}(\mathcal{D})$

For $t = 1, 2, \ldots, T$

1. request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
2. obtain tree g_t by $\text{Randomized-DTree}(\tilde{\mathcal{D}}_t)$

return $G = \text{Uniform}(\{g_t\})$

function $\text{AdaBoost-DTree}(\mathcal{D})$

For $t = 1, 2, \ldots, T$

1. reweight data by $u^{(t)}$
2. obtain tree g_t by $\text{DTree}(\mathcal{D}, u^{(t)})$
3. calculate ‘vote’ α_t of g_t
Gradient Boosted Decision Tree
Adaptive Boosted Decision Tree

From Random Forest to AdaBoost-DTree

function **RandomForest**(\mathcal{D})
For $t = 1, 2, \ldots, T$
1. request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
2. obtain tree g_t by Randomized-DTree$(\tilde{\mathcal{D}}_t)$

return $G = \text{Uniform}(\{g_t\})$

function **AdaBoost-DTree**(\mathcal{D})
For $t = 1, 2, \ldots, T$
1. reweight data by $u(t)$
2. obtain tree g_t by DTree$(\mathcal{D}, u(t))$
3. calculate ‘vote’ α_t of g_t

return $G = \text{LinearHypo}(\{(g_t, \alpha_t)\})$

need: weighted DTree$(\mathcal{D}, u(t))$
From Random Forest to AdaBoost-DTree

function RandomForest(\(\mathcal{D} \))

For \(t = 1, 2, \ldots, T \)

1. request size-\(N' \) data \(\tilde{\mathcal{D}}_t \) by bootstrapping with \(\mathcal{D} \)

2. obtain tree \(g_t \) by Randomized-DTree(\(\tilde{\mathcal{D}}_t \))

return \(G = \text{Uniform}(\{g_t\}) \)

function AdaBoost-DTree(\(\mathcal{D} \))

For \(t = 1, 2, \ldots, T \)

1. reweight data by \(u(t) \)

2. obtain tree \(g_t \) by DTree(\(\mathcal{D}, u(t) \))

3. calculate ‘vote’ \(\alpha_t \) of \(g_t \)

return \(G = \text{LinearHypo}(\{(g_t, \alpha_t)\}) \)

need: weighted DTree(\(\mathcal{D}, u(t) \))
Weighted Decision Tree Algorithm

Weighted Algorithm

minimize (regularized) \(E^{u}_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \text{err}(y_n, h(x_n)) \)
Weighted Decision Tree Algorithm

Weighted Algorithm

\[
\text{minimize (regularized) } E_{in}^u(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \text{err}(y_n, h(x_n))
\]

if using existing algorithm as **black box** (no modifications),
to get \(E_{in}^u \) approximately optimized......

‘Weighted’ Algorithm in Bagging

weights \(u \) expressed by bootstrap-sampled copies
Weighted Decision Tree Algorithm

Weighted Algorithm

\[
\text{minimize (regularized)} \quad E_{in}^u(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \text{err}(y_n, h(x_n))
\]

- If using existing algorithm as **black box** (no modifications), to get \(E_{in}^u \) approximately optimized......

‘Weighted’ Algorithm in Bagging

- Weights \(u \) expressed by bootstrap-sampled copies
- Request size-\(N' \) data \(\tilde{D}_t \)
- By bootstrapping with \(D \)
minimize (regularized) $E_{\text{in}}^u(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \text{err}(y_n, h(x_n))$

if using existing algorithm as black box (no modifications), to get E_{in}^u approximately optimized......

A General Randomized Base Algorithm
weights u expressed by sampling proportional to u_n

‘Weighted’ Algorithm in Bagging
weights u expressed by bootstrap-sampled copies
—request size-N' data \tilde{D}_t
by bootstrapping with D
Weighted Decision Tree Algorithm

Weighted Algorithm

\[
\text{minimize (regularized) } E^u_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \text{err}(y_n, h(x_n))
\]

if using existing algorithm as **black box** (no modifications),
to get \(E^u_{in} \) approximately optimized......

‘Weighted’ Algorithm in Bagging

weights \(u \) expressed by bootstrap-sampled copies
—request size-\(N' \) data \(\tilde{D}_t \)
by bootstrapping with \(D \)

A General Randomized Base Algorithm

weights \(u \) expressed by sampling proportional to \(u_n \)
—request size-\(N' \) data \(\tilde{D}_t \)
by sampling \(\propto u \) on \(D \)
Weighted Decision Tree Algorithm

Weighted Algorithm

\[
\text{minimize (regularized) } E_{\text{in}}^u(h) = \frac{1}{N} \sum_{n=1}^{N} u_n \cdot \text{err}(y_n, h(x_n))
\]

if using existing algorithm as **black box** (no modifications),
to get \(E_{\text{in}}^u \) approximately optimized......

‘Weighted’ Algorithm in Bagging

weights \(u \) expressed by bootstrap-sampled copies
—request size-\(N' \) data \(\tilde{D}_t \)
by bootstrapping with \(D \)

A General Randomized Base Algorithm

weights \(u \) expressed by sampling proportional to \(u_n \)
—request size-\(N' \) data \(\tilde{D}_t \)
by sampling \(\propto u \) on \(D \)

AdaBoost-DTree: often via
AdaBoost + **sampling** \(\propto u^{(t)} \) + DTree(\(\tilde{D}_t \))
without modifying DTree
AdaBoost: votes $\alpha_t = \ln \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$ with weighted error rate ϵ_t
Weak Decision Tree Algorithm

AdaBoost: votes $\alpha_t = \ln \diamond_t = \ln \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}$ with weighted error rate ϵ_t

if fully grown tree trained on all x_n

$\implies E_{in}(g_t) = \text{if all } x_n \text{ different}$
Weak Decision Tree Algorithm

AdaBoost: \(\text{votes } \alpha_t = \ln \diamond_t = \ln \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} \) with weighted error rate \(\epsilon_t \)

if fully grown tree trained on all \(x_n \)

\[E_{in}(g_t) = 0 \text{ if all } x_n \text{ different} \]
AdaBoost: votes $\alpha_t = \ln \phi_t = \ln \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}$ with weighted error rate ϵ_t

- if fully grown tree trained on all x_n
- $E_{\text{in}}(g_t) = 0$ if all x_n different
- $E_{\text{in}}(g_t) =$
Weak Decision Tree Algorithm

AdaBoost: \(\text{votes } \alpha_t = \ln \delta_t = \ln \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} \) with weighted error rate \(\epsilon_t \)

if fully grown tree trained on all \(x_n \)
\[\implies E_{in}(g_t) = 0 \] if all \(x_n \) different
\[\implies E_{in}^u(g_t) = 0 \]
Adaboost: \(\text{votes } \alpha_t = \ln \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} \) with weighted error rate \(\epsilon_t \)

- if fully grown tree trained on all \(x_n \)
 \[E_{in}(g_t) = 0 \text{ if all } x_n \text{ different} \]
 \[E_{iu}(g_t) = 0 \]
 \[\epsilon_t = \]
Weak Decision Tree Algorithm

Adaboost: votes $\alpha_t = \ln \hat{\epsilon}_t = \ln \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$ with weighted error rate ϵ_t

if fully grown tree trained on all x_n

$\implies E_{in}(g_t) = 0$ if all x_n different

$\implies E_{in}^u(g_t) = 0$

$\implies \epsilon_t = 0$
AdaBoost: \textbf{votes} $\alpha_t = \ln \sqrt{\frac{1-\epsilon_t}{\epsilon_t}}$ with \textbf{weighted error rate} ϵ_t

if fully grown tree trained on all x_n

$\implies E_{in}(g_t) = 0$ if all x_n different

$\implies E_{in}^{u}(g_t) = 0$

$\implies \epsilon_t = 0$

$\implies \alpha_t =$
Weak Decision Tree Algorithm

AdaBoost: votes $\alpha_t = \ln \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}$ with weighted error rate ϵ_t

if fully grown tree trained on all x_n

$\implies E_{in}(g_t) = 0$ if all x_n different

$\implies E_{in}^u(g_t) = 0$

$\implies \epsilon_t = 0$

$\implies \alpha_t = \infty$ (autocracy!!)
Weak Decision Tree Algorithm

AdaBoost: votes $\alpha_t = \ln \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}$ with weighted error rate ϵ_t

if fully grown tree trained on all x_n

$\implies E_{in}(g_t) = 0$ if all x_n different

$\implies E_{in}^u(g_t) = 0$

$\implies \epsilon_t = 0$

$\implies \alpha_t = \infty$ (autocracy!!)

need: pruned tree trained on some x_n to be weak
Weak Decision Tree Algorithm

AdaBoost: \textbf{votes} \(\alpha_t = \ln \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} \) with \textbf{weighted error rate} \(\epsilon_t \)

If fully grown tree trained on all \(x_n \)
\[\implies E_{in}(g_t) = 0 \text{ if all } x_n \text{ different} \]
\[\implies E_{u}(g_t) = 0 \]
\[\implies \epsilon_t = 0 \]
\[\implies \alpha_t = \infty \text{ (autocracy)} \]

Need: \textbf{pruned} tree trained on some \(x_n \) to be weak

- some: sampling \(\propto u(t) \)
AdaBoost: \textbf{votes} $\alpha_t = \ln \frac{1 - \epsilon_t}{\epsilon_t}$ with weighted error rate ϵ_t

If fully grown tree trained on all x_n

\implies $E_{in}(g_t) = 0$ if all x_n different

\implies $E_{in}^u(g_t) = 0$

\implies $\epsilon_t = 0$

\implies $\alpha_t = \infty$ (autocracy!!)

Need: \textbf{pruned} tree trained on some x_n to be \textbf{weak}

- \textbf{pruned}: usual pruning, or just \textbf{limiting tree height}
- \textbf{some}: sampling $\propto u^{(t)}$
Weak Decision Tree Algorithm

AdaBoost: \(\text{votes } \alpha_t = \ln \diamond_t = \ln \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} \) with weighted error rate \(\epsilon_t \)

if fully grown tree trained on all \(x_n \)
\[\implies E_{\text{in}}(g_t) = 0 \text{ if all } x_n \text{ different} \]
\[\implies E_{\text{in}}^u(g_t) = 0 \]
\[\implies \epsilon_t = 0 \]
\[\implies \alpha_t = \infty \text{ (autocracy!!)} \]

need: pruned tree trained on some \(x_n \) to be weak
- pruned: usual pruning, or just limiting tree height
- some: sampling \(\propto u^{(t)} \)

AdaBoost-DTree: often via AdaBoost + sampling \(\propto u^{(t)} \) + pruned DTree(\(\tilde{D} \))
AdaBoost with Extremely-Pruned Tree

what if DTREE with $\text{height} \leq 1$ (extremely pruned)?

\[H_{\text{AdaBoost-Stump}} = \text{special case of AdaBoost-DTree} \]

Hsuan-Tien Lin (NTU CSIE)
what if DTree with $\text{height} \leq 1$ (extremely pruned)?

DTree (C&RT) with $\text{height} \leq 1$

learn branching criteria

$$b(x) = \text{argmin}_{\text{decision stumps } h(x)} \sum_{c=1}^{2} |D_c \text{ with } h| \cdot \text{impurity}(D_c \text{ with } h)$$
AdaBoost with Extremely-Pruned Tree

what if DTree with $\text{height} \leq 1$ (extremely pruned)?

DTree (C&RT) with $\text{height} \leq 1$

Learn branching criteria

$$b(x) = \arg\min_{\text{decision stumps } h(x)} \sum_{c=1}^{2} |D_c \text{ with } h| \cdot \text{impurity}(D_c \text{ with } h)$$

—if impurity = binary classification error,

just a decision stump, remember? :-)

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 5/25
AdaBoost with Extremely-Pruned Tree

what if DT (C&RT) with $\text{height} \leq 1$ (extremely pruned)?

DT (C&RT) with $\text{height} \leq 1$

learn branching criteria

$$b(x) = \arg\min_{\text{decision stumps } h(x)} \sum_{c=1}^{2} |\mathcal{D}_c \text{ with } h| \cdot \text{impurity}(\mathcal{D}_c \text{ with } h)$$

—if impurity = binary classification error,

just a decision stump, remember? :-)

AdaBoost-Stump

= special case of AdaBoost-DTree
When running AdaBoost-DTree with sampling and getting a decision tree g_t such that g_t achieves zero error on the sampled data set \tilde{D}_t. Which of the following is possible?

1. $\alpha_t < 0$
2. $\alpha_t = 0$
3. $\alpha_t > 0$
4. all of the above
When running AdaBoost-DTree with sampling and getting a decision tree g_t such that g_t achieves zero error on the sampled data set \tilde{D}_t. Which of the following is possible?

1. $\alpha_t < 0$
2. $\alpha_t = 0$
3. $\alpha_t > 0$
4. all of the above

Reference Answer: 4

While g_t achieves zero error on \tilde{D}_t, g_t may not achieve zero weighted error on $(D, u^{(t)})$ and hence ϵ_t can be anything, even $\geq \frac{1}{2}$. Then, α_t can be ≤ 0.
Example Weights of AdaBoost

\[u_n^{(t+1)} = \begin{cases}
 u_n^{(t)} \cdot \diamond_t & \text{if incorrect} \\
 u_n^{(t)} / \diamond_t & \text{if correct}
\end{cases} \]

\[= u_n^{(t)} \cdot \diamond_t \]
Example Weights of AdaBoost

\[
\begin{align*}
&u_n^{(t+1)} = \begin{cases}
 u_n^{(t)} \cdot \diamond_t & \text{if incorrect} \\
 u_n^{(t)} / \diamond_t & \text{if correct}
\end{cases} \\
\end{align*}
\]

\[
= u_n^{(t)} \cdot \diamond_t - y_n g_t(x_n)
\]
Example Weights of AdaBoost

\[u^{(t+1)}_n = \begin{cases}
 u^{(t)}_n \cdot \diamond_t & \text{if incorrect} \\
 u^{(t)}_n / \diamond_t & \text{if correct}
\end{cases} \]

\[= u^{(t)}_n \cdot \diamond_t (-y_ng_t(x_n)) = u^{(t)}_n \cdot (-y_n g_t(x_n)) \]
Example Weights of AdaBoost

\[
\begin{align*}
 u_n^{(t+1)} &= \begin{cases}
 u_n^{(t)} \cdot \diamond_t & \text{if incorrect} \\
 u_n^{(t)} / \diamond_t & \text{if correct}
 \end{cases} \\
 &= u_n^{(t)} \cdot \diamond_t - y_n g_t(x_n) = u_n^{(t)} \cdot \exp(-y_n \alpha t g_t(x_n))
\end{align*}
\]
Example Weights of AdaBoost

\[
\begin{align*}
 u_n^{(t+1)} &= \begin{cases}
 u_n^{(t)} \cdot \diamond_t & \text{if incorrect} \\
 u_n^{(t)}/\diamond_t & \text{if correct}
 \end{cases} \\
 &= u_n^{(t)} \cdot \diamond_t - y_n g_t(x_n) = u_n^{(t)} \cdot \exp\left(-y_n \alpha_t g_t(x_n)\right)
\end{align*}
\]

\[
\begin{align*}
 u_n^{(T+1)} &= u_n^{(1)} \cdot \prod_{t=1}^{T} \exp(-y_n \alpha_t g_t(x_n)) = \frac{1}{N} \cdot \exp\left(-y_n \sum_{t=1}^{T} \alpha_t g_t(x_n)\right)
\end{align*}
\]
Example Weights of AdaBoost

\[u_n^{(t+1)} = \begin{cases}
 u_n^{(t)} \cdot \diamond_t & \text{if incorrect} \\
 u_n^{(t)} / \diamond_t & \text{if correct}
\end{cases} \]

\[= u_n^{(t)} \cdot \diamond_t - y_n g_t(x_n) = u_n^{(t)} \cdot \exp(-y_n \alpha_t g_t(x_n)) \]

\[u_n^{(T+1)} = u_n^{(1)} \cdot \prod_{t=1}^{T} \exp(-y_n \alpha_t g_t(x_n)) = \frac{1}{N} \cdot \exp\left(-y_n \sum_{t=1}^{T} \alpha_t g_t(x_n)\right) \]

\[\text{recall: } G(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t g_t(x)\right) \]
Gradient Boosted Decision Tree

Optimization View of AdaBoost

Example Weights of AdaBoost

\[u_n^{(t+1)} = \begin{cases}
 u_n^{(t)} \cdot \diamond_t & \text{if incorrect} \\
 u_n^{(t)} / \diamond_t & \text{if correct}
\end{cases} \]

\[u_n^{(t+1)} = u_n^{(t)} \cdot \diamond_t - y_n g_t(x_n) = u_n^{(t)} \cdot \exp(-y_n \alpha_t g_t(x_n)) \]

\[u_n^{(T+1)} = u_n^{(1)} \cdot \prod_{t=1}^{T} \exp(-y_n \alpha_t g_t(x_n)) = \frac{1}{N} \cdot \exp(-y_n \sum_{t=1}^{T} \alpha_t g_t(x_n)) \]

- recall: \(G(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t g_t(x) \right) \)

- \(\sum_{t=1}^{T} \alpha_t g_t(x) \): voting score of \(\{ g_t \} \) on \(x \)
Example Weights of AdaBoost

\[
\begin{aligned}
 u_{n}^{(t+1)} &= \begin{cases}
 u_{n}^{(t)} \cdot \diamondsuit_t & \text{if incorrect} \\
 u_{n}^{(t)} / \diamondsuit_t & \text{if correct}
 \end{cases} \\
 &= u_{n}^{(t)} \cdot \diamondsuit_t - y_{n}g_{t}(x_{n}) = u_{n}^{(t)} \cdot \exp \left(- y_{n} \alpha_{t} g_{t}(x_{n}) \right)
\end{aligned}
\]

\[
\begin{aligned}
 u_{n}^{(T+1)} = u_{n}^{(1)} \cdot \prod_{t=1}^{T} \exp \left(- y_{n} \alpha_{t} g_{t}(x_{n}) \right) = \frac{1}{N} \cdot \exp \left(- y_{n} \sum_{t=1}^{T} \alpha_{t} g_{t}(x_{n}) \right)
\end{aligned}
\]

- recall: \(G(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_{t} g_{t}(x) \right) \)

- \(\sum_{t=1}^{T} \alpha_{t} g_{t}(x) \) : voting score of \(\{g_{t}\} \) on \(x \)

AdaBoost: \(u_{n}^{(T+1)} \propto \exp \left(- y_{n} \text{ voting score on } x_{n} \right) \)
Gradient Boosted Decision Tree

Optimization View of AdaBoost

Voting Score and Margin

linear blending = \textbf{LinModel} + hypotheses as transform

\[G(x_n) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t g_t(x_n) \right) \]

\textbf{constraints}
Voting Score and Margin

linear blending = \textbf{LinModel} + hypotheses as transform + constraints

\[G(x_n) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t g_t(x_n) \right) \]

and hard-margin SVM margin = \[y_n \cdot (w^T \phi(x_n) + b), \text{ remember? :-)} \]
Voting Score and Margin

linear blending = \textbf{LinModel} + hypotheses as transform + constraints

\begin{equation}
G(x_n) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t g_t(x_n) \right)
\end{equation}

and hard-margin SVM \textbf{margin} = \frac{y_n \cdot (w^T \phi(x_n) + b)}{\|w\|}, \text{ remember? :-)}

\begin{equation}
y_n(\text{voting score}) = \text{signed \\ & unnormalized margin}
\end{equation}
Gradient Boosted Decision Tree

Optimization View of AdaBoost

Voting Score and Margin

linear blending = \text{LinModel} + hypotheses as transform + \text{constraints}

\[G(x_n) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t g_t(x_n) \right) \]

and hard-margin SVM margin = \[
\frac{y_n \cdot (w^T \phi(x_n) + b)}{||w||}, \text{ remember? :-)}
\]

\[y_n(\text{voting score}) = \text{signed & unnormalized margin} \]

want \[y_n(\text{voting score}) \text{ positive & large} \]
Voting Score and Margin

Linear Blending:

\[\text{linear blending} = \text{LinModel} + \text{hypotheses as transform} + \text{constraints} \]

\[
G(x_n) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t g_t(x_n) \right)
\]

Voting Score:

\[
G(x_n) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t g_t(x_n) \right)
\]

Hard-Margin SVM Margin:

\[
\text{margin} = \frac{y_n \cdot (w^T \phi(x_n) + b)}{\|w\|}, \text{ remember? :-)}
\]

\[
y_n(\text{voting score}) = \text{signed & unnormalized margin}
\]

Claim: AdaBoost decreases

\[
\sum_{n=1}^{N} u(t) = \text{small}
\]

- want \(y_n(\text{voting score}) \) **positive & large**
- \(\Leftrightarrow \) \(\exp(-y_n(\text{voting score})) \) **small**
Voting Score and Margin

linear blending = \textbf{LinModel} + hypotheses as transform + constraints

\[
G(x_n) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t \frac{g_t(x_n)}{w_i} \phi_i(x_n)\right)
\]

and hard-margin SVM \textbf{margin} = \[y_n \cdot \left(\frac{w^T \phi(x_n) + b}{\|w\|}\right) \text{, remember? :-)} \]

\[y_n(\text{voting score}) = \text{signed & unnormalized margin} \]

\(\Leftrightarrow\) \[\exp(-y_n(\text{voting score})) \text{ small} \]
\(\Leftrightarrow\) \[u_n^{(T+1)} \text{ small} \]
Voting Score and Margin

linear blending = $\text{LinModel} + \text{hypotheses as transform} + \text{constraints}$

$$G(x_n) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t g_t(x_n) \right)$$

and hard-margin SVM margin = $y_n \cdot (w^T \phi(x_n) + b)$, remember? :-)

$y_n(\text{voting score}) = \text{signed & unnormalized margin}$

want $y_n(\text{voting score})$ positive & large

$\iff \exp(-y_n(\text{voting score}))$ small

$\iff u_n^{(T+1)}$ small

claim: AdaBoost decreases $\sum_{n=1}^{N} u_n^{(t)}$
claim: AdaBoost decreases \(\sum_{n=1}^{N} u_n^{(t)} \) and thus somewhat minimizes

\[
\sum_{n=1}^{N} u_n^{(T+1)} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \sum_{t=1}^{T} \alpha_t g_t(x_n) \right)
\]
claim: AdaBoost decreases \(\sum_{n=1}^{N} u_n^{(t)} \) and thus somewhat \textbf{minimizes}

\[
\sum_{n=1}^{N} u_n^{(T+1)} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \sum_{t=1}^{T} \alpha_t g_t(x_n) \right)
\]

linear score \(s = \sum_{t=1}^{T} \alpha_t g_t(x_n) \)
claim: AdaBoost decreases $\sum_{n=1}^{N} u^{(t)}_n$ and thus somewhat **minimizes**

$$\sum_{n=1}^{N} u^{(T+1)}_n = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \sum_{t=1}^{T} \alpha_t g_t(x_n) \right)$$

linear score $s = \sum_{t=1}^{T} \alpha_t g_t(x_n)$

- $\text{err}_{0/1}(s, y) = [ys \leq 0]$
AdaBoost Error Function

Claim: AdaBoost decreases \(\sum_{n=1}^{N} u_n^{(T)} \) and thus somewhat **minimizes**

\[
\sum_{n=1}^{N} u_n^{(T+1)} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \sum_{t=1}^{T} \alpha_t g_t(x_n) \right)
\]

Linear Score:
\[
s = \sum_{t=1}^{T} \alpha_t g_t(x_n)
\]

- \(\text{err}_{0/1}(s, y) = [ys \leq 0] \)
- \(\hat{\text{err}}_{\text{ADA}}(s, y) = \exp(-ys) \): upper bound of \(\text{err}_{0/1} \)
 —called **exponential error measure**
Gradient Boosted Decision Tree

Optimization View of AdaBoost

AdaBoost Error Function

Claim: AdaBoost decreases \(\sum_{n=1}^{N} u_n^{(t)} \) and thus somewhat minimizes

\[
\sum_{n=1}^{N} u_n^{(T+1)} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \sum_{t=1}^{T} \alpha_t g_t(x_n) \right)
\]

Linear score \(s = \sum_{t=1}^{T} \alpha_t g_t(x_n) \)

- \(\text{err}_{0/1}(s, y) = \mathbb{I}[ys \leq 0] \)
- \(\hat{\text{err}}_{\text{ADA}}(s, y) = \exp(-ys) \): upper bound of \(\text{err}_{0/1} \)
 —called exponential error measure

\(\hat{\text{err}}_{\text{ADA}} \): algorithmic error measure
by convex upper bound of \(\text{err}_{0/1} \)
Gradient Descent on AdaBoost Error Function

recall: gradient descent (remember? :-)), at iteration t

$$\min_{\|v\|=1} E_{\text{in}}(w_t + \eta v) \approx E_{\text{in}}(w_t) + \eta v^T \nabla E_{\text{in}}(w_t)$$

- Known
- Given positive
- Known
Gradient Descent on AdaBoost Error Function

recall: gradient descent \((\text{remember? :-)})\), at iteration \(t\)

\[
\min_{\|v\|=1} E_{\text{in}}(w_t + \eta v) \approx E_{\text{in}}(w_t) + \eta v^T \nabla E_{\text{in}}(w_t)
\]

\(\text{known}\) \(\text{given positive}\) \(\text{known}\)

at iteration \(t\), to find \(g_t\), solve

\[
\min_h \hat{E}_{\text{ADA}} = \frac{1}{N} \sum_{n=1}^{N} \exp\left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n) \right) \right)
\]
Gradient Boosting Decision Tree
Optimization View of AdaBoost

Gradient Descent on AdaBoost Error Function

recall: gradient descent (remember? :-)), at iteration t

$$
\min_{\|v\|=1} E_{\text{in}}(w_t + \eta v) \approx E_{\text{in}}(w_t) + \eta v^T \nabla E_{\text{in}}(w_t)
$$

at iteration t, to find g_t, solve

$$
\min_h \widehat{E}_{\text{ADA}} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_\tau g_\tau(x_n) + \eta h(x_n) \right) \right) \\
= \sum_{n=1}^{N} \exp \left(-y_n \eta h(x_n) \right)
$$
Gradient Descent on AdaBoost Error Function

Recall: gradient descent (remember? :-)), at iteration t

$$\min_{\|v\|=1} E_{\text{in}}(w_t + \eta v) \approx E_{\text{in}}(w_t) + \eta v^T \nabla E_{\text{in}}(w_t)$$

At iteration t, to find g_t, solve

$$\min_h \; \hat{E}_{\text{ADA}} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_\tau g_\tau(x_n) + \eta h(x_n) \right) \right)$$

$$= \sum_{n=1}^{N} u_n^{(t)} \exp \left(-y_n \eta h(x_n) \right)$$
Gradient Descent on AdaBoost Error Function

recall: gradient descent (remember? :-)), at iteration t

\[
\min_{\|v\|=1} E_{\text{in}}(w_t + \eta v) \approx E_{\text{in}}(w_t) + \eta v^T \nabla E_{\text{in}}(w_t)
\]

at iteration t, to find g_t, solve

\[
\min_h \hat{E}_{\text{ADA}} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n) \right) \right)
\]

\[
= \sum_{n=1}^{N} u_n^{(t)} \exp \left(-y_n \eta h(x_n) \right)
\]

taylor

\[
\approx \sum_{n=1}^{N} u_n^{(t)} ()
\]
Gradient Descent on AdaBoost Error Function

recall: gradient descent (remember? :-)), at iteration t

$$\min_{\|v\|=1} E_{\text{in}}(w_t + \eta v) \approx E_{\text{in}}(w_t) + \eta v^T \nabla E_{\text{in}}(w_t)$$

known

given positive

known

at iteration t, to find g_t, solve

$$\min_h \hat{E}_{\text{ADA}} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n) \right) \right)$$

$$= \sum_{n=1}^{N} u^{(t)}_n \exp (-y_n \eta h(x_n))$$

taylor

$$\approx \sum_{n=1}^{N} u^{(t)}_n (1 - y_n \eta h(x_n))$$
Gradient Descent on AdaBoost Error Function

Recall: gradient descent (remember? :-)), at iteration t

$$\min_{\|v\|=1} E_{in}(w_t + \eta v) \approx E_{in}(w_t) + \eta v^T \nabla E_{in}(w_t)$$

At iteration t, to find g_t, solve

$$\min_h \tilde{E}_{ADA} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n) \right) \right)$$

$$= \sum_{n=1}^{N} u^{(t)}_n \exp \left(-y_n \eta h(x_n) \right)$$

Taylor

$$\approx \sum_{n=1}^{N} u^{(t)}_n \left(1 - y_n \eta h(x_n) \right) = \sum_{n=1}^{N} u^{(t)}_n - \eta \sum_{n=1}^{N} u^{(t)}_n$$
Gradient Descent on AdaBoost Error Function

recall: gradient descent (remember? :-)), at iteration t

$$
\min_{\|v\|=1} E_{in}(w_t + \eta v) \approx E_{in}(w_t) + \eta v^T \nabla E_{in}(w_t)
$$

at iteration t, to find g_t, solve

$$
\min_h \hat{E}_{ADA} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n) \right) \right)
$$

$$
= \sum_{n=1}^{N} u_n^{(t)} \exp \left(-y_n \eta h(x_n) \right)
$$

taylor

$$
\approx \sum_{n=1}^{N} u_n^{(t)} \left(1 - y_n \eta h(x_n) \right) = \sum_{n=1}^{N} u_n^{(t)} - \eta \sum_{n=1}^{N} u_n^{(t)} y_n h(x_n)
$$
Gradient Boosted Decision Tree

Optimization View of AdaBoost

Gradient Descent on AdaBoost Error Function

recall: gradient descent (remember? :-)), at iteration \(t \)

\[
\min_{\|v\|=1} E_{\text{in}}(w_t + \eta v) \approx E_{\text{in}}(w_t) + \underbrace{\eta v^T \nabla E_{\text{in}}(w_t)}_{\text{known}}
\]

at iteration \(t \), to find \(g_t \), solve

\[
\min_{h} \hat{E}_{\text{ADA}} = \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_\tau g_\tau(x_n) + \eta h(x_n) \right) \right)
\]

\[
= \sum_{n=1}^{N} u_{n}^{(t)} \exp \left(-y_n \eta h(x_n) \right)
\]

taylor

\[
\approx \sum_{n=1}^{N} u_{n}^{(t)} \left(1 - y_n \eta h(x_n) \right) = \sum_{n=1}^{N} u_{n}^{(t)} - \eta \sum_{n=1}^{N} u_{n}^{(t)} y_n h(x_n)
\]

good \(h \): minimize \(\sum_{n=1}^{N} u_{n}^{(t)} (-y_n h(x_n)) \)
Learning Hypothesis as Optimization

finding good h (function direction) ⇔ minimize $\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n))$
Learning Hypothesis as Optimization

finding good h (function direction) \iff minimize $\sum_{n=1}^{N} u_n^{(t)} (-y_nh(x_n))$

for binary classification, where y_n and $h(x_n)$ both $\in \{-1, +1\}$:
Learning Hypothesis as Optimization

finding good h (function direction) \iff minimize $\sum_{n=1}^{N} u^{(t)}_n (-y_n h(x_n))$

for binary classification, where y_n and $h(x_n)$ both $\in \{-1, +1\}$:

$$\sum_{n=1}^{N} u^{(t)}_n (-y_n h(x_n)) = \sum_{n=1}^{N} u^{(t)}_n \begin{cases} \text{if } y_n = h(x_n) \\ \text{if } y_n \neq h(x_n) \end{cases}$$
Learning Hypothesis as Optimization

finding good h (function direction) \iff minimize $\sum_{n=1}^{N} u_{n}^{(t)} (-y_{n} h(x_{n}))$

for binary classification, where y_{n} and $h(x_{n})$ both $\in \{-1, +1\}$:

$$\sum_{n=1}^{N} u_{n}^{(t)} (-y_{n} h(x_{n})) = \sum_{n=1}^{N} u_{n}^{(t)} \left\{ \begin{array}{ll} -1 & \text{if } y_{n} = h(x_{n}) \\ +1 & \text{if } y_{n} \neq h(x_{n}) \end{array} \right.$$
Learning Hypothesis as Optimization

finding good \(h \) (function direction) ⇔ minimize \(\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n)) \)

for binary classification, where \(y_n \) and \(h(x_n) \) both \(\in \{ -1, +1 \} \):

\[
\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n)) = \sum_{n=1}^{N} u_n^{(t)} \left\{ \begin{array}{ll}
-1 & \text{if } y_n = h(x_n) \\
+1 & \text{if } y_n \neq h(x_n)
\end{array} \right.
\]

\[
= -\sum_{n=1}^{N} u_n^{(t)} + \sum_{n=1}^{N} u_n^{(t)} \left\{ \begin{array}{ll}
& \text{if } y_n = h(x_n) \\
& \text{if } y_n \neq h(x_n)
\end{array} \right.
\]
Learning Hypothesis as Optimization

Finding good h (function direction) \iff minimize $\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n))$

For binary classification, where y_n and $h(x_n)$ both $\in \{-1, +1\}$:

$$\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n)) = \sum_{n=1}^{N} u_n^{(t)} \begin{cases} -1 & \text{if } y_n = h(x_n) \\ +1 & \text{if } y_n \neq h(x_n) \end{cases} = -\sum_{n=1}^{N} u_n^{(t)} + \sum_{n=1}^{N} u_n^{(t)} \begin{cases} 0 & \text{if } y_n = h(x_n) \\ 2 & \text{if } y_n \neq h(x_n) \end{cases}$$
Learning Hypothesis as Optimization

finding good h (function direction) \iff minimize $\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n))$

for binary classification, where y_n and $h(x_n)$ both $\in \{-1, +1\}$:

$$\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n)) = \sum_{n=1}^{N} u_n^{(t)} \begin{cases} -1 & \text{if } y_n = h(x_n) \\ +1 & \text{if } y_n \neq h(x_n) \end{cases}$$

$$= -\sum_{n=1}^{N} u_n^{(t)} + \sum_{n=1}^{N} u_n^{(t)} \begin{cases} 0 & \text{if } y_n = h(x_n) \\ 2 & \text{if } y_n \neq h(x_n) \end{cases}$$

$$= -\sum_{n=1}^{N} u_n^{(t)} + 2 \cdot N$$
Learning Hypothesis as Optimization

finding good h (function direction) \Leftrightarrow minimize $\sum_{n=1}^{N} u_{n}^{(t)} (-y_{n} h(x_{n}))$

for binary classification, where y_{n} and $h(x_{n})$ both $\in \{-1, +1\}$:

$$\sum_{n=1}^{N} u_{n}^{(t)} (-y_{n} h(x_{n})) = \sum_{n=1}^{N} u_{n}^{(t)} \begin{cases} -1 & \text{if } y_{n} = h(x_{n}) \\ +1 & \text{if } y_{n} \neq h(x_{n}) \end{cases}$$

$$= - \sum_{n=1}^{N} u_{n}^{(t)} + \sum_{n=1}^{N} u_{n}^{(t)} \begin{cases} 0 & \text{if } y_{n} = h(x_{n}) \\ 2 & \text{if } y_{n} \neq h(x_{n}) \end{cases}$$

$$= - \sum_{n=1}^{N} u_{n}^{(t)} + 2 E_{\text{in}}^{u(t)}(h) \cdot N$$
Finding good h (function direction) \Leftrightarrow minimize $\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n))$

For binary classification, where y_n and $h(x_n)$ both $\in \{-1, +1\}$:

$$\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n)) = \sum_{n=1}^{N} u_n^{(t)} \begin{cases} -1 & \text{if } y_n = h(x_n) \\ +1 & \text{if } y_n \neq h(x_n) \end{cases}$$

$$= - \sum_{n=1}^{N} u_n^{(t)} + \sum_{n=1}^{N} u_n^{(t)} \begin{cases} 0 & \text{if } y_n = h(x_n) \\ 2 & \text{if } y_n \neq h(x_n) \end{cases}$$

$$= - \sum_{n=1}^{N} u_n^{(t)} + 2E_{in}^{u(t)}(h) \cdot N$$

—Who minimizes $E_{in}^{u(t)}(h)$?
finding good h (function direction) \iff minimize $\sum_{n=1}^{N} u^{(t)}_n (-y_n h(x_n))$

for binary classification, where y_n and $h(x_n)$ both $\in \{-1, +1\}$:

$$\sum_{n=1}^{N} u^{(t)}_n (-y_n h(x_n)) = \sum_{n=1}^{N} u^{(t)}_n \left\{ \begin{array}{ll} -1 & \text{if } y_n = h(x_n) \\ +1 & \text{if } y_n \neq h(x_n) \end{array} \right.$$

$$= -\sum_{n=1}^{N} u^{(t)}_n + \sum_{n=1}^{N} u^{(t)}_n \left\{ \begin{array}{ll} 0 & \text{if } y_n = h(x_n) \\ 2 & \text{if } y_n \neq h(x_n) \end{array} \right.$$

$$= -\sum_{n=1}^{N} u^{(t)}_n + 2E_{in}^{u^{(t)}}(h) \cdot N$$

—who minimizes $E_{in}^{u^{(t)}}(h)$? A in AdaBoost! :-(
Learning Hypothesis as Optimization

finding good h (function direction) \iff minimize $\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n))$

for binary classification, where y_n and $h(x_n)$ both $\in \{-1, +1\}$:

$$
\sum_{n=1}^{N} u_n^{(t)} (-y_n h(x_n)) = \sum_{n=1}^{N} u_n^{(t)} \begin{cases}
-1 & \text{if } y_n = h(x_n) \\
+1 & \text{if } y_n \neq h(x_n)
\end{cases}
$$

$$
= - \sum_{n=1}^{N} u_n^{(t)} + \sum_{n=1}^{N} u_n^{(t)} \begin{cases}
0 & \text{if } y_n = h(x_n) \\
2 & \text{if } y_n \neq h(x_n)
\end{cases}
$$

$$
= - \sum_{n=1}^{N} u_n^{(t)} + 2E_{\text{in}}^{u(t)}(h) \cdot N
$$

—who minimizes $E_{\text{in}}^{u(t)}(h)$? A in AdaBoost! :-)

A: good $g_t = h$ for ‘gradient descent’
Deciding Blending Weight as Optimization

AdaBoost finds g_t by approximately

$$\min_h \hat{E}_{ADA} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta h(x_n))$$
Deciding Blending Weight as Optimization

AdaBoost finds g_t by approximately

$$\min_h \hat{E}_{\text{ADA}} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta h(x_n))$$

after finding g_t, how about

$$\min_\eta \hat{E}_{\text{ADA}} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta g_t(x_n))$$
Deciding Blending Weight as Optimization

AdaBoost finds g_t by approximately minimizing

$$\hat{E}_{ADA} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta h(x_n))$$

after finding g_t, how about minimizing

$$\min_{\eta} \hat{E}_{ADA} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta g_t(x_n))$$

- optimal η_t somewhat ‘greedily faster’ than fixed (small) η
Deciding Blending Weight as Optimization

AdaBoost finds g_t by approximately

$$\min_h \hat{E}_{ADA} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta h(x_n))$$

after finding g_t, how about

$$\min_\eta \hat{E}_{ADA} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta g_t(x_n))$$

- optimal η_t somewhat ‘greedily faster’ than fixed (small) η
 —called steepest descent for optimization
Deciding Blending Weight as Optimization

AdaBoost finds g_t by approximately minimizing $\min_h \hat{E}_{\text{ADA}} = \sum_{n=1}^{N} u_n^{(t)} \exp(-y_n \eta h(x_n))$

after finding g_t, how about $\min_\eta \hat{E}_{\text{ADA}} = \sum_{n=1}^{N} u_n^{(t)} \exp(-y_n \eta g_t(x_n))$

- optimal η_t somewhat ‘greedily faster’ than fixed (small) η
 —called steepest descent for optimization
- two cases inside summation:
 - $y_n = g_t(x_n)$: (correct)
 - $y_n \neq g_t(x_n)$: (incorrect)
Deciding Blending Weight as Optimization

AdaBoost finds g_t by approximately minimizing

$$
\hat{E}_{\text{ADA}} = \min_{h} \sum_{n=1}^{N} u_n(t) \exp \left(-y_n \eta h(x_n) \right)
$$

after finding g_t, how about

$$
\min_{\eta} \hat{E}_{\text{ADA}} = \sum_{n=1}^{N} u_n(t) \exp \left(-y_n \eta g_t(x_n) \right)
$$

- optimal η_t somewhat ‘greedily faster’ than fixed (small) η
 —called **steepest** descent for optimization
- two cases inside summation:
 - $y_n = g_t(x_n)$: $u_n(t) \exp (-\eta)$ (correct)
 - $y_n \neq g_t(x_n)$: $u_n(t) \exp (+\eta)$ (incorrect)
AdaBoost finds g_t by approximately minimizing $\hat{E}_{ADA} = \sum_{h=1}^{N} u_n^{(t)} \exp (-y_n \eta h(x_n))$.

After finding g_t, how about minimizing $\min_{\eta} \hat{E}_{ADA} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta g_t(x_n))$?

- Optimal η_t somewhat 'greedily faster' than fixed (small) η—called **steepest** descent for optimization.
- Two cases inside summation:
 - $y_n = g_t(x_n): u_n^{(t)} \exp (-\eta)$ (correct)
 - $y_n \neq g_t(x_n): u_n^{(t)} \exp (+\eta)$ (incorrect)

$$\hat{E}_{ADA} = \left(\sum_{n=1}^{N} u_n^{(t)} \right) \cdot \left(\exp (-\eta) + \exp (+\eta) \right)$$
Gradient Boosted Decision Tree

Optimization View of AdaBoost

Deciding Blending Weight as Optimization

AdaBoost finds g_t by approximately

$$\min_h \hat{E}_{\text{ADA}} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta h(x_n))$$

after finding g_t, how about

$$\min_\eta \hat{E}_{\text{ADA}} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta g_t(x_n))$$

- optimal η_t somewhat 'greedily faster' than fixed (small) η
 —called steepest descent for optimization
- two cases inside summation:
 - $y_n = g_t(x_n) : u_n^{(t)} \exp (-\eta)$ (correct)
 - $y_n \neq g_t(x_n) : u_n^{(t)} \exp (+\eta)$ (incorrect)
- $$\hat{E}_{\text{ADA}} = \left(\sum_{n=1}^{N} u_n^{(t)} \right) \cdot \left((1 - \epsilon_t) \exp (-\eta) + \epsilon_t \exp (+\eta) \right)$$
Deciding Blending Weight as Optimization

AdaBoost finds g_t by approximately

$$
\hat{E}_{\text{ADA}} = \sum_{n=1}^{N} u_n^{(t)} \exp \left(-y_n \eta h(x_n) \right)
$$

after finding g_t, how about

$$
\min_{\eta} \hat{E}_{\text{ADA}} = \sum_{n=1}^{N} u_n^{(t)} \exp \left(-y_n \eta g_t(x_n) \right)
$$

- optimal η_t somewhat ‘greedily faster’ than fixed (small) η
 —called steepest descent for optimization
- two cases inside summation:
 - $y_n = g_t(x_n)$: $u_n^{(t)} \exp (-\eta)$ (correct)
 - $y_n \neq g_t(x_n)$: $u_n^{(t)} \exp (+\eta)$ (incorrect)
- $\hat{E}_{\text{ADA}} = \left(\sum_{n=1}^{N} u_n^{(t)} \right) \cdot \left((1 - \epsilon_t) \exp (-\eta) + \epsilon_t \exp (+\eta) \right)$

by solving $\frac{\partial \hat{E}_{\text{ADA}}}{\partial \eta} = 0$, steepest $\eta_t = \ln \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} = $
Deciding Blending Weight as Optimization

Gradient Boosted Decision Tree

Optimization View of AdaBoost

AdaBoost finds g_t by approximately

$$\widehat{E}_{\text{ADA}} = \min_{h} \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta h(x_n))$$

after finding g_t, how about

$$\min_{\eta} \widehat{E}_{\text{ADA}} = \sum_{n=1}^{N} u_n^{(t)} \exp (-y_n \eta g_t(x_n))$$

- optimal η_t somewhat ‘**greedily faster**’ than fixed (small) η —called **steepest** descent for optimization

- two cases inside summation:
 - $y_n = g_t(x_n) : u_n^{(t)} \exp (-\eta)$ (correct)
 - $y_n \neq g_t(x_n) : u_n^{(t)} \exp (+\eta)$ (incorrect)

- $\widehat{E}_{\text{ADA}} = \left(\sum_{n=1}^{N} u_n^{(t)} \right) \cdot \left((1 - \epsilon_t) \exp (-\eta) + \epsilon_t \exp (+\eta) \right)$

by solving $\frac{\partial \widehat{E}_{\text{ADA}}}{\partial \eta} = 0$, **steepest** $\eta_t = \ln \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} = \alpha_t$, *remember?* :-)}
Gradient Boosted Decision Tree

Optimization View of AdaBoost

Deciding Blending Weight as Optimization

AdaBoost finds g_t by approximately

$$\min_h \hat{E}_{ADA} = \sum_{n=1}^{N} u^{(t)}_n \exp (-y_n \eta h(x_n))$$

after finding g_t, how about

$$\min_\eta \hat{E}_{ADA} = \sum_{n=1}^{N} u^{(t)}_n \exp (-y_n \eta g_t(x_n))$$

- optimal η_t somewhat ‘greedily faster’ than fixed (small) η
 —called steepest descent for optimization
- two cases inside summation:
 - $y_n = g_t(x_n): u^{(t)}_n \exp (-\eta)$
 (correct)
 - $y_n \neq g_t(x_n): u^{(t)}_n \exp (+\eta)$
 (incorrect)
- $\hat{E}_{ADA} = \left(\sum_{n=1}^{N} u^{(t)}_n \right) \cdot \left((1 - \epsilon_t) \exp (-\eta) + \epsilon_t \exp (+\eta) \right)$

by solving $\frac{\partial \hat{E}_{ADA}}{\partial \eta} = 0$, steepest $\eta_t = \ln \sqrt{\frac{1-\epsilon_t}{\epsilon_t}} = \alpha_t$, remember? :-)

—AdaBoost: steepest descent with approximate functional gradient
With $\hat{E}_{\text{ADA}} = \left(\sum_{n=1}^{N} u_n^{(t)} \right) \cdot \left((1 - \epsilon_t) \exp(-\eta) + \epsilon_t \exp(+\eta) \right)$, which of the following is $\frac{\partial \hat{E}_{\text{ADA}}}{\partial \eta}$ that can be used for solving the optimal η_t?

1. $\left(\sum_{n=1}^{N} u_n^{(t)} \right) \cdot \left((1 - \epsilon_t) \exp(-\eta) + \epsilon_t \exp(+\eta) \right)$
2. $\left(\sum_{n=1}^{N} u_n^{(t)} \right) \cdot \left((1 - \epsilon_t) \exp(-\eta) - \epsilon_t \exp(+\eta) \right)$
3. $\left(\sum_{n=1}^{N} u_n^{(t)} \right) \cdot \left(-(1 - \epsilon_t) \exp(-\eta) + \epsilon_t \exp(+\eta) \right)$
4. $\left(\sum_{n=1}^{N} u_n^{(t)} \right) \cdot \left(-(1 - \epsilon_t) \exp(-\eta) - \epsilon_t \exp(+\eta) \right)$

Reference Answer: 3

Differentiate $\exp(-\eta)$ and $\exp(+\eta)$ with respect to η and you should easily get the result.
With $\hat{E}_{\text{ADA}} = \left(\sum_{n=1}^{N} u_n^{(t)}\right) \cdot \left((1 - \epsilon_t) \exp(-\eta) + \epsilon_t \exp(+\eta) \right)$, which of the following is $\frac{\partial \hat{E}_{\text{ADA}}}{\partial \eta}$ that can be used for solving the optimal η_t?

1. $\left(\sum_{n=1}^{N} u_n^{(t)}\right) \cdot \left(+ (1 - \epsilon_t) \exp(-\eta) + \epsilon_t \exp(+\eta) \right)$
2. $\left(\sum_{n=1}^{N} u_n^{(t)}\right) \cdot \left(+ (1 - \epsilon_t) \exp(-\eta) - \epsilon_t \exp(+\eta) \right)$
3. $\left(\sum_{n=1}^{N} u_n^{(t)}\right) \cdot \left(- (1 - \epsilon_t) \exp(-\eta) + \epsilon_t \exp(+\eta) \right)$
4. $\left(\sum_{n=1}^{N} u_n^{(t)}\right) \cdot \left(- (1 - \epsilon_t) \exp(-\eta) - \epsilon_t \exp(+\eta) \right)$

Reference Answer: 3

Differentiate $\exp(-\eta)$ and $\exp(+\eta)$ with respect to η and you should easily get the result.
Gradient Boosting for Arbitrary Error Function

AdaBoost

\[
\min_{\eta} \min_{h} \min \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n) \right) \right)
\]

with binary-output hypothesis \(h \)
Gradient Boosting for Arbitrary Error Function

AdaBoost

\[
\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n) \right) \right)
\]

with binary-output hypothesis \(h \)

GradientBoost

Gradient Boosted Decision Tree
Gradient Boosting for Arbitrary Error Function

AdaBoost

$$\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n) \right) \right)$$

with binary-output hypothesis h

GradientBoost

$$\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \text{err} \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n), y_n \right)$$
Gradient Boosting for Arbitrary Error Function

AdaBoost

\[
\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n) \right) \right)
\]

with binary-output hypothesis \(h \)

GradientBoost

\[
\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \text{err} \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n), y_n \right)
\]

with any hypothesis \(h \) (usually real-output hypothesis)
Gradient Boosting for Arbitrary Error Function

AdaBoost

\[
\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \exp \left(-y_n \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n) \right) \right)
\]

with binary-output hypothesis \(h \)

GradientBoost

\[
\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \text{err} \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n), y_n \right)
\]

with any hypothesis \(h \) (usually real-output hypothesis)

GradientBoost: allows extension to different \text{err} for regression/soft classification/etc.
GradientBoost for Regression

\[
\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\sum_{\tau=1}^{t-1} \alpha_\tau g_\tau(x_n) + \eta h(x_n), y_n \right) + \text{err}(s_n, y_n)
\]

with \(\text{err}(s, y) = (s - y)^2 \)
Gradient Boosting for Regression

\[
\min_{\eta} \min_{h} \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n), y_n\right) \]

with \(\text{err}(s, y) = (s - y)^2 \)

\[
\min \ldots \approx \min_{h} \frac{1}{N} \sum_{n=1}^{N} \text{err}(s_n, y_n) + \frac{1}{N} \sum_{n=1}^{N} \eta h(x_n) \]

(\text{constant})
GradientBoost for Regression

\[
\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n), y_n\right) + \eta h(x_n)
\]

with \(\text{err}(s, y) = (s - y)^2\)

\[
\min_{h} \approx \min_h \frac{1}{N} \sum_{n=1}^{N} \text{err}(s_n, y_n) + \frac{1}{N} \sum_{n=1}^{N} \eta h(x_n) \frac{\partial \text{err}(s, y_n)}{\partial s} \bigg|_{s=s_n}
\]
GradientBoost for Regression

\[\min_{\eta} \min_{h} \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n), y_n \right) \]

with \(\text{err}(s, y) = (s - y)^2 \)

\[\approx \min_{h} \frac{1}{N} \sum_{n=1}^{N} \text{err}(s_n, y_n) + \frac{1}{N} \sum_{n=1}^{N} \eta h(x_n) \]

\[\frac{\partial \text{err}(s, y_n)}{\partial s} \bigg|_{s=s_n} \]

\[= \min_{h} \text{constants} + \frac{\eta}{N} \sum_{n=1}^{N} h(x_n) \cdot \text{constant} \]
Gradient Boosting for Regression

\[
\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n), y_n\right)
\]

with \(\text{err}(s, y) = (s - y)^2\)

\[
\approx \min_h \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(s_n, y_n\right) + \frac{1}{N} \sum_{n=1}^{N} \eta h(x_n) \left. \frac{\partial \text{err}(s, y_n)}{\partial s} \right|_{s=s_n}
\]

\[
= \min_h \text{constants} + \frac{\eta}{N} \sum_{n=1}^{N} h(x_n) \cdot 2(s_n - y_n)
\]
Gradient Boosting

Gradient Boost for Regression

\[
\min_{\eta} \min_h \left(\frac{1}{N} \sum_{n=1}^{N} \text{err} \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n), y_n \right) \right) \quad \text{with} \quad \text{err}(s, y) = (s - y)^2
\]

\[
\min_h \left(\frac{1}{N} \sum_{n=1}^{N} \text{err}(s_n, y_n) + \frac{1}{N} \sum_{n=1}^{N} \eta h(x_n) \right) \quad \text{constant} \quad \frac{\partial \text{err}(s, y_n)}{\partial s} \bigg|_{s=s_n}
\]

\[
= \min_h \text{constants} + \frac{\eta}{N} \sum_{n=1}^{N} h(x_n) \cdot 2(s_n - y_n)
\]

naïve solution \(h(x_n) = - (s_n - y_n) \)

if no constraint on \(h \)
Gradient Boosting for Regression

\[
\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta h(x_n), y_n\right) \]

with \(\text{err}(s, y) = (s - y)^2\)

\[
\text{taylor} \approx \min \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\text{const}, y_n\right) + \frac{1}{N} \sum_{n=1}^{N} \eta h(x_n) \cdot \left. \frac{\partial \text{err}(s, y_n)}{\partial s} \right|_{s=s_n}
\]

\[
= \min \text{constants} + \frac{\eta}{N} \sum_{n=1}^{N} h(x_n) \cdot 2(s_n - y_n)
\]

naïve solution \(h(x_n) = -\infty \cdot (s_n - y_n)\)

if no constraint on \(h\)
Learning Hypothesis as Optimization

\[
\min_h \text{ constants} + \frac{\eta}{N} \sum_{n=1}^{N} 2h(x_n)(s_n - y_n)
\]
Learning Hypothesis as Optimization

\[
\min_h \text{ constants} + \frac{\eta}{N} \sum_{n=1}^{N} 2h(x_n)(s_n - y_n)
\]

- **magnitude** of \(h \) does not matter:
Learning Hypothesis as Optimization

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} 2h(x_n)(s_n - y_n)
\]

- magnitude of \(h \) does not matter: because \(\eta \) will be optimized next
Learning Hypothesis as Optimization

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} 2h(x_n)(s_n - y_n)
\]

- magnitude of \(h \) does not matter: because \(\eta \) will be optimized next
- penalize large magnitude to avoid naïve solution
Learning Hypothesis as Optimization

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} 2h(x_n)(s_n - y_n)
\]

- magnitude of \(h \) does not matter: because \(\eta \) will be optimized next
- penalize large magnitude to avoid naïve solution

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} (2h(x_n)(s_n - y_n) + (h(x_n))^2)
\]
Gradient Boosted Decision Tree

Gradient Boosting

Learning Hypothesis as Optimization

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} 2h(x_n)(s_n - y_n)
\]

- **magnitude** of \(h \) does not matter: because \(\eta \) will be optimized next
- **penalize large magnitude** to avoid naïve solution

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} \left(2h(x_n)(s_n - y_n) + (h(x_n))^2 \right)
\]

\[
= \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} \left(\right)
\]
Gradient Boosting

Learning Hypothesis as Optimization

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} 2h(x_n)(s_n - y_n)
\]

- **magnitude** of \(h \) does not matter: because \(\eta \) will be optimized next
- **penalize large magnitude** to avoid naïve solution

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} \left(2h(x_n)(s_n - y_n) + (h(x_n))^2 \right)
\]

\[
= \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} \left(\text{constant} + (h(x_n) - (y_n - s_n))^2 \right)
\]
Learning Hypothesis as Optimization

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} 2h(x_n)(s_n - y_n)
\]

- magnitude of \(h \) does not matter: because \(\eta \) will be optimized next
- penalize large magnitude to avoid naïve solution

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} \left(2h(x_n)(s_n - y_n) + (h(x_n))^2 \right)
\]

\[
= \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} \left(\text{constant} + (h(x_n) - (y_n - s_n))^2 \right)
\]

- solution of penalized approximate functional gradient:
 squared-error regression on \(\{(x_n, y_n - s_n)\} \)
Gradient Boosted Decision Tree

Gradient Boosting

Learning Hypothesis as Optimization

\[
\min_h \text{ constants} + \frac{\eta}{N} \sum_{n=1}^{N} 2h(x_n)(s_n - y_n)
\]

- **magnitude** of \(h \) does not matter: because \(\eta \) will be optimized next
- **penalize large magnitude** to avoid naïve solution

\[
\min_h \text{ constants} + \frac{\eta}{N} \sum_{n=1}^{N} (2h(x_n)(s_n - y_n) + (h(x_n))^2)
\]

\[
= \text{ constants} + \frac{\eta}{N} \sum_{n=1}^{N} \left(\text{constant} + (h(x_n) - (y_n - s_n))^2 \right)
\]

- **solution of penalized approximate functional gradient**: squared-error regression on \(\{(x_n, y_n - s_n)\} \)

Hsuan-Tien Lin (NTU CSIE) 16/25
Learning Hypothesis as Optimization

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} 2h(x_n)(s_n - y_n)
\]

- **magnitude** of \(h \) does not matter: because \(\eta \) will be optimized next
- **penalize large magnitude** to avoid naïve solution

\[
\min_h \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} (2h(x_n)(s_n - y_n) + (h(x_n))^2)
\]

\[
= \text{ constants } + \frac{\eta}{N} \sum_{n=1}^{N} \left(\text{constant } + (h(x_n) - (y_n - s_n))^2 \right)
\]

- **solution of penalized approximate functional gradient**: squared-error regression on \(\{(x_n, y_n - s_n)\} \)
Deciding Blending Weight as Optimization

after finding $g_t = h$,

$$\min_{\eta} \min_{n} \frac{1}{N} \sum_{n=1}^{N} \text{err} \left(\sum_{\tau=1}^{t-1} \alpha_\tau g_\tau(x_n) + \eta g_t(x_n), y_n \right)$$

with $\text{err}(s, y) = (s - y)^2$
Deciding Blending Weight as Optimization

after finding \(g_t = h \),

\[
\min_{\eta} \min_{xn} \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta g_t(x_n), y_n \right)
\]

\[
\text{with } \text{err}(s, y) = (s - y)^2
\]

\[
\min_{\eta} \frac{1}{N} \sum_{n=1}^{N} (s_n + \eta g_t(x_n) - y_n)^2
\]
Deciding Blending Weight as Optimization

after finding $g_t = h$,

$$\min_{\eta} \min_n \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta g_t(x_n), y_n\right)$$

with $\text{err}(s, y) = (s - y)^2$

\[\min_{\eta} \frac{1}{N} \sum_{n=1}^{N} (s_n + \eta g_t(x_n) - y_n)^2 = \frac{1}{N} \sum_{n=1}^{N} (s_n - \eta g_t(x_n))^2 \]
Deciding Blending Weight as Optimization

after finding $g_t = h$,

$$\min_{\eta} \min_h \frac{1}{N} \sum_{n=1}^{N} \text{err} \left(\sum_{\tau=1}^{t-1} \alpha_{\tau} g_{\tau}(x_n) + \eta g_t(x_n), y_n \right)$$

with \(\text{err}(s, y) = (s - y)^2 \)

and

$$\min_{\eta} \frac{1}{N} \sum_{n=1}^{N} (s_n + \eta g_t(x_n) - y_n)^2 = \frac{1}{N} \sum_{n=1}^{N} ((y_n - s_n) - \eta g_t(x_n))^2$$
Deciding Blending Weight as Optimization

after finding $g_t = h$,

$$
\min_{\eta} \min_{\mathbf{n}} \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\sum_{\tau=1}^{t-1} \alpha_\tau g_\tau(\mathbf{x}_n) + \eta g_t(\mathbf{x}_n), y_n \right)
$$

with $\text{err}(s, y) = (s - y)^2$

$$
\min_{\eta} \frac{1}{N} \sum_{n=1}^{N} (s_n + \eta g_t(\mathbf{x}_n) - y_n)^2 = \frac{1}{N} \sum_{n=1}^{N} (y_n - s_n - \eta g_t(\mathbf{x}_n))^2
$$

—one-variable linear regression on $\{(g_t\text{-transformed input, residual})\}$
Deciding Blending Weight as Optimization

after finding $g_t = h$,

$$
\min_\eta \min_n \frac{1}{N} \sum_{n=1}^{N} \text{err}\left(\sum_{\tau=1}^{t-1} \alpha_\tau g_\tau(x_n) + \eta g_t(x_n), y_n \right) \text{ with } \text{err}(s, y) = (s - y)^2
$$

GradientBoost for regression: $\alpha_t = \text{optimal } \eta$ by g_t-transformed linear regression
Putting Everything Together

Gradient Boosted Decision Tree (GBDT)

for $t = 1, 2, \ldots, T$

return $G(x) = \sum_{t=1}^{T} \alpha_t g_t(x)$
Putting Everything Together

Gradient Boosted Decision Tree (GBDT)

$s_1 = s_2 = \ldots = s_N = 0$

for $t = 1, 2, \ldots, T$

1. obtain g_t by $\mathcal{A}(\{(x_n, y_n - s_n)\})$ where \mathcal{A} is a (squared-error) regression algorithm

return $G(x) = \sum_{t=1}^{T} \alpha_t g_t(x)$
Gradient Boosted Decision Tree (GBDT)

\[s_1 = s_2 = \ldots = s_N = 0 \]

for \(t = 1, 2, \ldots, T \)

1. obtain \(g_t \) by \(A(\{(x_n, y_n - s_n)\}) \) where \(A \) is a (squared-error) regression algorithm
 —how about sampled and pruned C&RT?

return \(G(x) = \sum_{t=1}^{T} \alpha_t g_t(x) \)
Gradient Boosted Decision Tree (GBDT)

\[s_1 = s_2 = \ldots = s_N = 0 \]
for \(t = 1, 2, \ldots, T \)

1. obtain \(g_t \) by \(A(\{(x_n, y_n - s_n)\}) \) where \(A \) is a (squared-error) regression algorithm
 —how about sampled and pruned C&RT?

2. compute \(\alpha_t = \text{OneVarLinearRegression}(\{(g_t(x_n), y_n - s_n)\}) \)

return \(G(x) = \sum_{t=1}^{T} \alpha_t g_t(x) \)
Gradient Boosted Decision Tree (GBDT)

\[s_1 = s_2 = \ldots = s_N = 0 \]

for \(t = 1, 2, \ldots, T \)

1. obtain \(g_t \) by \(A(\{(x_n, y_n - s_n)\}) \) where \(A \) is a (squared-error) regression algorithm
 —how about sampled and pruned C\&RT?

2. compute \(\alpha_t = \text{OneVarLinearRegression}(\{(g_t(x_n), y_n - s_n)\}) \)

3. update \(s_n \leftarrow s_n + \alpha_t g_t(x_n) \)

return \(G(x) = \sum_{t=1}^{T} \alpha_t g_t(x) \)
Putting Everything Together

Gradient Boosted Decision Tree (GBDT)

\[s_1 = s_2 = \ldots = s_N = 0 \]

for \(t = 1, 2, \ldots, T \)

1. obtain \(g_t \) by \(A(\{(x_n, y_n - s_n)\}) \) where \(A \) is a (squared-error) regression algorithm

2. how about sampled and pruned C&RT?

3. compute \(\alpha_t = \text{OneVarLinearRegression}(\{(g_t(x_n), y_n - s_n)\}) \)

4. update \(s_n \leftarrow s_n + \alpha_t g_t(x_n) \)

return \(G(x) = \sum_{t=1}^{T} \alpha_t g_t(x) \)

GBDT: ‘regression sibling’ of AdaBoost-DTree — popular in practice
Which of the following is the optimal η for

$$
\min_{\eta} \frac{1}{N} \sum_{n=1}^{N} \left((y_n - s_n) - \eta g_t(x_n) \right)^2
$$

1. $(\sum_{n=1}^{N} g_t(x_n)(y_n - s_n)) \cdot \left(\sum_{n=1}^{N} g_t^2(x_n) \right)$
2. $(\sum_{n=1}^{N} g_t(x_n)(y_n - s_n)) \div \left(\sum_{n=1}^{N} g_t^2(x_n) \right)$
3. $(\sum_{n=1}^{N} g_t(x_n)(y_n - s_n)) + \left(\sum_{n=1}^{N} g_t^2(x_n) \right)$
4. $(\sum_{n=1}^{N} g_t(x_n)(y_n - s_n)) - \left(\sum_{n=1}^{N} g_t^2(x_n) \right)$

Reference Answer: 2
Derived within Lecture 9 of ML Foundations, remember? :-)
Hsuan-Tien Lin (NTU CSIE)
Which of the following is the optimal η for

$$\min_{\eta} \frac{1}{N} \sum_{n=1}^{N} ((y_n - s_n) - \eta g_t(x_n))^2$$

1. $$(\sum_{n=1}^{N} g_t(x_n)(y_n - s_n)) \cdot (\sum_{n=1}^{N} g_t^2(x_n))$$
2. $$(\sum_{n=1}^{N} g_t(x_n)(y_n - s_n)) / (\sum_{n=1}^{N} g_t^2(x_n))$$
3. $$(\sum_{n=1}^{N} g_t(x_n)(y_n - s_n)) + (\sum_{n=1}^{N} g_t^2(x_n))$$
4. $$(\sum_{n=1}^{N} g_t(x_n)(y_n - s_n)) - (\sum_{n=1}^{N} g_t^2(x_n))$$

Reference Answer: 2

Derived within Lecture 9 of ML Foundations, remember? :-(
Map of Blending Models

blending: aggregate after getting diverse g_t
Map of Blending Models

blending: aggregate after getting diverse g_t

uniform

simple
voting/averaging of g_t
Map of Blending Models

blending: aggregate after getting diverse g_t

- uniform
 - simple voting/averaging of g_t
- non-uniform
 - linear model on g_t-transformed inputs
Map of Blending Models

blending: aggregate after getting diverse g_t

- **uniform**
 - simple
 - voting/averaging of g_t

- **non-uniform**
 - linear model on g_t-transformed inputs

- **conditional**
 - nonlinear model on g_t-transformed inputs
blending: aggregate after getting diverse g_t

uniform
- simple
- voting/averaging of g_t

non-uniform
- linear model on g_t-transformed inputs

conditional
- nonlinear model on g_t-transformed inputs

uniform for ‘stability’;
Map of Blending Models

blending: aggregate after getting **diverse** g_t

- **uniform**
 - simple
 - voting/averaging of g_t

- **non-uniform**
 - linear model on g_t-transformed inputs

- **conditional**
 - nonlinear model on g_t-transformed inputs

uniform for ‘stability’;
non-uniform/conditional **carefully** for ‘complexity’
Map of Aggregation-Learning Models

learning: aggregate as well as getting \textit{diverse} g_t
Map of Aggregation-Learning Models

learning: aggregate as well as getting diverse g_t

Bagging

diverse g_t by bootstrapping;
Map of Aggregation-Learning Models

learning: aggregate as well as getting diverse g_t

Bagging

- diverse g_t by bootstrapping;
- uniform vote by nothing :-)

Gradient Boosted Decision Tree

Summary of Aggregation Models

Hsuan-Tien Lin (NTU CSIE)
Map of Aggregation-Learning Models

learning: aggregate as well as getting diverse \(g_t \)

Bagging
- diverse \(g_t \) by bootstrapping;
- uniform vote by nothing :-)

AdaBoost
- diverse \(g_t \) by reweighting;
Map of Aggregation-Learning Models

learning: aggregate **as well as getting diverse** g_t

Bagging

diverse g_t by bootstrapping;
uniform vote by nothing :-)

AdaBoost

diverse g_t
by reweighting;
linear vote by steepest search
Map of Aggregation-Learning Models

learning: aggregate as well as getting diverse g_t

Bagging
- diverse g_t by bootstrapping; uniform vote by nothing :-)

AdaBoost
- diverse g_t by reweighting; linear vote by steepest search

Decision Tree
- conditional vote by branching
Map of Aggregation-Learning Models

learning: aggregate as well as getting diverse g_t

Bagging
- diverse g_t by bootstrapping;
- uniform vote by nothing :-)

AdaBoost
- diverse g_t
- by reweighting;
- linear vote by steepest search

Decision Tree
- diverse g_t
- by data splitting;
- conditional vote by branching
Map of Aggregation-Learning Models

learning: aggregate **as well as getting** diverse g_t

<table>
<thead>
<tr>
<th>Bagging</th>
<th>AdaBoost</th>
<th>Decision Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>diverse g_t by bootstrapping; uniform vote by nothing :-</td>
<td>diverse g_t by reweighting; linear vote by steepest search</td>
<td>diverse g_t by data splitting; conditional vote by branching</td>
</tr>
</tbody>
</table>

GradientBoost

diverse g_t
by residual fitting;
Map of Aggregation-Learning Models

learning: aggregate as well as getting diverse g_t

- **Bagging**
 - diverse g_t by bootstrapping;
 - uniform vote by nothing :-)

- **AdaBoost**
 - diverse g_t by reweighting;
 - linear vote by steepest search

- **Decision Tree**
 - diverse g_t by data splitting;
 - conditional vote by branching

- **GradientBoost**
 - diverse g_t by residual fitting;
 - linear vote by steepest search
Map of Aggregation-Learning Models

learning: aggregate as well as getting diverse g_t

Bagging
- diverse g_t by bootstrapping;
 uniform vote by nothing :-)

AdaBoost
- diverse g_t by reweighting;
 linear vote by steepest search

Decision Tree
- diverse g_t by data splitting;
 conditional vote by branching

GradientBoost
- diverse g_t by residual fitting;
 linear vote by steepest search

boosting-like algorithms most popular
Map of Aggregation of Aggregation Models

- Bagging
- AdaBoost
- Decision Tree

- GradientBoost

Gradient Boosted Decision Tree
Map of Aggregation of Aggregation Models

- Bagging
- AdaBoost
- Decision Tree
- Random Forest
 - randomized bagging
 - + ‘strong’ DTree
- GradientBoost

Summary of Aggregation Models

Gradient Boosted Decision Tree
Map of Aggregation of Aggregation Models

- **Bagging**
- **AdaBoost**
- **Decision Tree**
 - Random Forest
 - randomized bagging
 - + ‘strong’ DTree
 - AdaBoost-DTree
 - AdaBoost
 - + ‘weak’ DTree
 - GradientBoost
Map of Aggregation of Aggregation Models

- **Bagging**
 - Random Forest
 - randomized bagging
 - + ‘strong’ DTree

- **AdaBoost**
 - AdaBoost-DTree
 - AdaBoost
 - + ‘weak’ DTree

- **Decision Tree**

- **GradientBoost**

- **GBDT**
 - GradientBoost
 - + ‘weak’ DTree
Gradient Boosted Decision Tree

Summary of Aggregation Models

Map of Aggregation of Aggregation Models

- **Bagging**
 - Random Forest
 - randomized bagging + ‘strong’ DTree

- **AdaBoost**
 - AdaBoost-DTree
 - AdaBoost + ‘weak’ DTree

- **Decision Tree**
 - GradientBoost
 - GBDT
 - GradientBoost + ‘weak’ DTree

all three frequently used in practice
Gradient Boosted Decision Tree

Summary of Aggregation Models

Specialty of Aggregation Models

- **cure underfitting**
 - $G(x) \rightarrow \text{'strong'}$
 - aggregation $= \Rightarrow$ feature transform

- **cure overfitting**
 - $G(x) \rightarrow \text{'moderate'}$
 - aggregation $= \Rightarrow$ regularization

Proper aggregation (a.k.a. 'ensemble') \Rightarrow better performance
Specialty of Aggregation Models

- **cure underfitting**
 - $G(x)$ ‘strong’
Specialty of Aggregation Models

- **cure underfitting**
 - $G(x)$ ‘strong’
 - aggregation
 \implies **feature transform**

- **cure overfitting**
 - $G(x)$ ‘moderate’
 - aggregation \implies regularization
 \implies **better performance**
cure underfitting

- \(G(x) \) ‘strong’
- aggregation

\[\rightarrow \text{feature transform} \]
Specialty of Aggregation Models

- **cure underfitting**
 - $G(x)$ ‘strong’
 - aggregation \Rightarrow feature transform

- **cure overfitting**
 - $G(x)$ ‘moderate’
Specialty of Aggregation Models

cure underfitting
- $G(x)$ ‘strong’
- aggregation
 \Rightarrow **feature transform**

cure overfitting
- $G(x)$ ‘moderate’
- aggregation
 \Rightarrow **regularization**
Gradient Boosted Decision Tree

Summary of Aggregation Models

Specialty of Aggregation Models

cure underfitting

• $G(x)$ ‘strong’
• aggregation

⇒ feature transform

cure overfitting

• $G(x)$ ‘moderate’
• aggregation

⇒ regularization

proper aggregation (a.k.a. ‘ensemble’)

⇒ better performance
Which of the following aggregation model learns diverse g_t by reweighting and calculates linear vote by steepest search?

1. AdaBoost
2. Random Forest
3. Decision Tree
4. Linear Blending
Which of the following aggregation model learns diverse g_t by reweighting and calculates linear vote by steepest search?

1. AdaBoost
2. Random Forest
3. Decision Tree
4. Linear Blending

Reference Answer: 1

Congratulations on being an expert in aggregation models! :-}
Summary

1. Embedding Numerous Features: Kernel Models
2. Combining Predictive Features: Aggregation Models

Lecture 11: Gradient Boosted Decision Tree
- Adaptive Boosted Decision Tree
 sampling and pruning for ‘weak’ trees
- Optimization View of AdaBoost
 functional gradient descent on exponential error
- Gradient Boosting
 iterative steepest residual fitting
- Summary of Aggregation Models
 some cure underfitting; some cure overfitting

3. Distilling Implicit Features: Extraction Models
- next: extract features other than hypotheses