Lecture 9: Decision Tree

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering
National Taiwan University (國立台灣大學資訊工程系)
Roadmap

1 Embedding Numerous Features: Kernel Models
2 Combining Predictive Features: Aggregation Models

Lecture 8: Adaptive Boosting
optimal re-weighting for diverse hypotheses and adaptive linear aggregation to boost ‘weak’ algorithms

Lecture 9: Decision Tree
- Decision Tree Hypothesis
- Decision Tree Algorithm
- Decision Tree Heuristics in C&RT
- Decision Tree in Action

3 Distilling Implicit Features: Extraction Models
What We Have Done

blending: aggregate \textit{after} getting g_t;

<table>
<thead>
<tr>
<th>aggregation type</th>
<th>blending</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform</td>
<td>voting/averaging</td>
</tr>
<tr>
<td>non-uniform</td>
<td>linear</td>
</tr>
<tr>
<td>conditional</td>
<td>stacking</td>
</tr>
</tbody>
</table>
What We Have Done

- **blending**: aggregate after getting g_t;
- **learning**: aggregate as well as getting g_t

<table>
<thead>
<tr>
<th>aggregation type</th>
<th>blending</th>
<th>learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform</td>
<td>voting/averaging</td>
<td>Bagging</td>
</tr>
<tr>
<td>non-uniform</td>
<td>linear</td>
<td>AdaBoost</td>
</tr>
<tr>
<td>conditional</td>
<td>stacking</td>
<td></td>
</tr>
</tbody>
</table>
What We Have Done

- **blending**: aggregate *after* getting g_t;
- **learning**: aggregate *as well as* getting g_t

<table>
<thead>
<tr>
<th>aggregation type</th>
<th>blending</th>
<th>learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform</td>
<td>voting/averaging</td>
<td>Bagging</td>
</tr>
<tr>
<td>non-uniform</td>
<td>linear</td>
<td>AdaBoost</td>
</tr>
<tr>
<td>conditional</td>
<td>stacking</td>
<td>Decision Tree</td>
</tr>
</tbody>
</table>

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Techniques
What We Have Done

blending: aggregate after getting g_t;
learning: aggregate as well as getting g_t

<table>
<thead>
<tr>
<th>aggregation type</th>
<th>blending</th>
<th>learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform</td>
<td>voting/averaging</td>
<td>Bagging</td>
</tr>
<tr>
<td>non-uniform</td>
<td>linear</td>
<td>AdaBoost</td>
</tr>
<tr>
<td>conditional</td>
<td>stacking</td>
<td>Decision Tree</td>
</tr>
</tbody>
</table>

decision tree: a traditional learning model that realizes conditional aggregation
Decision Tree for Watching MOOC Lectures

- **quitting time?**
 - $< 18:30$
 - $> 21:30$
- **has a date?**
 - true
 - false
- **deadline?**
 - > 2 days
 - < -2 days

Quitting Time

- **Within 18:30**
 - **has a date?**
 - true
 - false
 - **deadline?**
 - true
 - false
- **After 21:30**
 - **has a date?**
 - true
 - false
 - **deadline?**
 - true
 - false

Date

- **Within 2 days**
 - **deadline?**
 - true
 - false
- **After 2 days**
 - **deadline?**
 - true
 - false
Decision Tree for Watching MOOC Lectures

\[G(x) = \sum_{t=1}^{T} q_t(x) \cdot g_t(x) \]

- quitting time?
 - \(< 18:30\)
 - \(> 21:30\)
- has a date?
 - true
 - false
- deadline?
 - \(> 2\) days
 - \(< -2\) days

Decision tree: arguably one of the most human-mimicking models

Hsuan-Tien Lin (NTU CSIE)
Decision Tree for Watching MOOC Lectures

\[G(x) = \sum_{t=1}^{T} q_t(x) \cdot g_t(x) \]

- **base hypothesis** \(g_t(x) \): leaf at end of path \(t \), a **constant** here

Decision tree:
- **quitting time?**
 - \(< 18:30 \)**
 - \(> 21:30 \)

- **has a date?**
 - \(Y \)
 - \(N \)
 - true
 - false
 - \(> 2 \) days
 - between
 - \(< -2 \) days

- **deadline?**
 - \(Y \)
 - \(N \)
Decision Tree for Watching MOOC Lectures

$$G(x) = \sum_{t=1}^{T} q_t(x) \cdot g_t(x)$$

- **base hypothesis** $g_t(x)$: leaf at end of path t, a **constant** here
- **condition** $q_t(x)$: \(\text{is } x \text{ on path } t? \)

Decision tree:
- quitting time?
 - $< 18:30$
 - $> 21:30$
- has a date?
 - Y
 - N
- deadline?
 - Y
 - N
 - > 2 days
 - < -2 days
Decision Tree for Watching MOOC Lectures

$$G(x) = \sum_{t=1}^{T} q_t(x) \cdot g_t(x)$$

- **base hypothesis** $g_t(x)$: leaf at end of path t, a **constant** here
- **condition** $q_t(x)$: $\{ x$ on path $t? \}$
- usually with **simple** internal nodes

Decision Tree: arguably one of the most human-mimicking models
Decision Tree for Watching MOOC Lectures

\[G(x) = \sum_{t=1}^{T} q_t(x) \cdot g_t(x) \]

- **Base hypothesis** \(g_t(x) \): leaf at end of path \(t \), a **constant** here
- **Condition** \(q_t(x) \): [is \(x \) on path \(t \)?]
- Usually with **simple** internal nodes

Decision tree: arguably one of the most **human-mimicking models**
Recursive View of Decision Tree

Path View: \(G(x) = \sum_{t=1}^{T} \left[x \text{ on path } t \right] \cdot \text{leaf}_t(x) \)
Recursive View of Decision Tree

Path View: \(G(x) = \sum_{t=1}^{T} [x \text{ on path } t] \cdot \text{leaf}_t(x) \)

Recursive View

\[
G(x) = \sum_{c=1}^{C} \left[b(x) = c \right] \cdot G_c(x)
\]
Recursive View of Decision Tree

Path View: \(G(\mathbf{x}) = \sum_{t=1}^{T} [\mathbf{x} \text{ on path } t] \cdot \text{leaf}_t(\mathbf{x}) \)

Recursive View

\[
G(\mathbf{x}) = \sum_{c=1}^{C} [b(\mathbf{x}) = c] \cdot G_c(\mathbf{x})
\]

- \(G(\mathbf{x}) \): full-tree hypothesis
Recursive View of Decision Tree

Path View: \(G(\mathbf{x}) = \sum_{t=1}^{T} [\mathbf{x} \text{ on path } t] \cdot \text{leaf}_t(\mathbf{x}) \)

Recursive View

\[
G(\mathbf{x}) = \sum_{c=1}^{C} \left[b(\mathbf{x}) = c \right] \cdot G_c(\mathbf{x})
\]

- \(G(\mathbf{x}) \): full-tree hypothesis
- \(b(\mathbf{x}) \): branching criteria
Recursive View of Decision Tree

Path View: \(G(x) = \sum_{t=1}^{T} [x \text{ on path } t] \cdot \text{leaf}_t(x) \)

Recursive View

\[
G(x) = \sum_{c=1}^{C} [b(x) = c] \cdot G_c(x)
\]

- \(G(x) \): full-tree hypothesis
- \(b(x) \): branching criteria
- \(G_c(x) \): sub-tree hypothesis at the \(c \)-th branch
Recursive View of Decision Tree

Path View: \[G(x) = \sum_{t=1}^{T} [x \text{ on path } t] \cdot \text{leaf}_t(x) \]

Recursive View

\[G(x) = \sum_{c=1}^{C} \left[b(x) = c \right] \cdot G_c(x) \]

- \(G(x) \): full-tree hypothesis
- \(b(x) \): branching criteria
- \(G_c(x) \): sub-tree hypothesis at the \(c \)-th branch

\[\text{tree} = (\text{root, sub-trees}), \]
Recursive View of Decision Tree

Path View: \(G(\mathbf{x}) = \sum_{t=1}^{T} \left[\mathbf{x} \text{ on path } t \right] \cdot \text{leaf}_t(\mathbf{x}) \)

Recursive View

\[
G(\mathbf{x}) = \sum_{c=1}^{C} \left[b(\mathbf{x}) = c \right] \cdot G_c(\mathbf{x})
\]

- \(G(\mathbf{x}) \): full-tree hypothesis
- \(b(\mathbf{x}) \): branching criteria
- \(G_c(\mathbf{x}) \): sub-tree hypothesis at the \(c \)-th branch

Tree = (root, sub-trees), just like what your data structure instructor would say :-)
Disclaimers about Decision Tree

Usefulness

- human-explainable: **widely used** in business/medical data analysis
Usefulness

- human-explainable: widely used in business/medical data analysis
- simple: even freshmen can implement one :-)

Disclaimers about Decision Tree
Disclaimers about Decision Tree

Usefulness

- human-explainable: **widely used** in business/medical data analysis
- simple:
 even freshmen can implement one :-)
- efficient in prediction and training
Disclaimers about Decision Tree

Usefulness

• human-explainable: **widely used** in business/medical data analysis
• simple: **even freshmen can implement one :-)**
• efficient in prediction and **training**

However......
Disclaimers about Decision Tree

Usefulness

- human-explainable: widely used in business/medical data analysis
- simple: even freshmen can implement one :-)
- efficient in prediction and training

However......

- heuristic: mostly little theoretical explanations
Disclaimers about Decision Tree

Usefulness
- human-explainable: widely used in business/medical data analysis
- simple: even freshmen can implement one :-)
- efficient in prediction and training

However......
- heuristic: mostly little theoretical explanations
- heuristics: ‘heuristics selection’ confusing to beginners
Disclaimers about Decision Tree

Usefulness

- human-explainable: widely used in business/medical data analysis
- simple: even freshmen can implement one :-)
- efficient in prediction and training

However......

- heuristic: mostly little theoretical explanations
- heuristics: ‘heuristics selection’ confusing to beginners
- arguably no single representative algorithm
Disclaimers about Decision Tree

Usefulness

- human-explainable: widely used in business/medical data analysis
- simple: even freshmen can implement one :-)
- efficient in prediction and training

However......

- heuristic: mostly little theoretical explanations
- heuristics: ‘heuristics selection’ confusing to beginners
- arguably no single representative algorithm

decision tree: mostly heuristic but useful on its own
The following C-like code can be viewed as a decision tree of three leaves.

```c
if (income > 100000) return true;
else {
    if (debt > 50000) return false;
    else return true;
}
```

What is the output of the tree for \((\text{income}, \text{debt}) = (98765, 56789)\)?

1. true
2. false
3. 98765
4. 56789
The following C-like code can be viewed as a decision tree of three leaves.

```c
if (income > 100000) return true;
else {
    if (debt > 50000) return false;
    else return true;
}
```

What is the output of the tree for \((income, debt) = (98765, 56789)\)?

- 1. true
- 2. false
- 3. 98765
- 4. 56789

Reference Answer: 2

You can simply trace the code. The tree expresses a complicated boolean condition
\([income > 100000 \text{ or } debt \leq 50000]\).
\[G(\mathbf{x}) = \sum_{c=1}^{C} \left[b(\mathbf{x}) = c \right] G_c(\mathbf{x}) \]

function DecisionTree(data \(D = \{(\mathbf{x}_n, y_n)\}_{n=1}^N \))
A Basic Decision Tree Algorithm

\[G(\mathbf{x}) = \sum_{c=1}^{C} \left[b(\mathbf{x}) = c \right] G_c(\mathbf{x}) \]

function DecisionTree(data \(\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^{N} \))

1. learn branching criteria \(b(\mathbf{x}) \)
A Basic Decision Tree Algorithm

\[
G(x) = \sum_{c=1}^{C} \left[b(x) = c \right] G_c(x)
\]

function \text{DecisionTree}(data \mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N})

1. learn branching criteria \(b(x) \)
2. split \(\mathcal{D} \) to \(C \) parts \(\mathcal{D}_c = \{(x_n, y_n): b(x_n) = c\} \)
A Basic Decision Tree Algorithm

\[G(x) = \sum_{c=1}^{C} [b(x) = c] \cdot G_c(x) \]

function `DecisionTree(data D = \{(x_n, y_n)\}_{n=1}^{N})`:

1. learn branching criteria \(b(x) \)
2. split \(D \) to \(C \) parts \(D_c = \{(x_n, y_n) : b(x_n) = c\} \)
3. build sub-tree \(G_c \leftarrow \text{DecisionTree}(D_c) \)
A Basic Decision Tree Algorithm

\[G(x) = \sum_{c=1}^{C} [b(x) = c] G_c(x) \]

function DecisionTree(data \(\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N} \))

1. learn branching criteria \(b(x) \)
2. split \(\mathcal{D} \) to \(C \) parts \(\mathcal{D}_c = \{(x_n, y_n) : b(x_n) = c\} \)
3. build sub-tree \(G_c \leftarrow \text{DecisionTree}(\mathcal{D}_c) \)
4. return \(G(x) = \sum_{c=1}^{C} [b(x) = c] G_c(x) \)
A Basic Decision Tree Algorithm

\[G(x) = \sum_{c=1}^{C} \left[b(x) = c \right] G_c(x) \]

function DecisionTree(data \(D = \{(x_n, y_n)\}_{n=1}^{N} \))

if termination criteria met

 return base hypothesis \(g_t(x) \)

else

 1. learn branching criteria \(b(x) \)
 2. split \(D \) to \(C \) parts \(D_c = \{(x_n, y_n) : b(x_n) = c\} \)
 3. build sub-tree \(G_c \leftarrow \text{DecisionTree}(D_c) \)
 4. return \(G(x) = \sum_{c=1}^{C} \left[b(x) = c \right] G_c(x) \)
A Basic Decision Tree Algorithm

\[G(x) = \sum_{c=1}^{C} \left[b(x) = c \right] G_c(x) \]

function DecisionTree(data \(D = \{ (x_n, y_n) \}_{n=1}^{N} \))

if termination criteria met

return base hypothesis \(g_t(x) \)

else

1. learn branching criteria \(b(x) \)
2. split \(D \) to \(C \) parts \(D_c = \{ (x_n, y_n) : b(x_n) = c \} \)
3. build sub-tree \(G_c \leftarrow \text{DecisionTree}(D_c) \)
4. return \(G(x) = \sum_{c=1}^{C} \left[b(x) = c \right] G_c(x) \)

four choices: number of branches, branching criteria, termination criteria, & base hypothesis
function DecisionTree(data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N}$)
if termination criteria met
 return base hypothesis $g_t(x)$
else ...
 ② split \mathcal{D} to C parts $\mathcal{D}_c = \{(x_n, y_n): b(x_n) = c\}$
function DecisionTree(data $D = \{(x_n, y_n)\}_{n=1}^{N}$)
if termination criteria met
 return base hypothesis $g_t(x)$
else ...
 ① split D to C parts $D_c = \{(x_n, y_n): b(x_n) = c\}$

two simple choices
Decision Tree Algorithm

Classification and Regression Tree (C&RT)

function DecisionTree(data $D = \{(x_n, y_n)\}_{n=1}^N$)
if termination criteria met
 return base hypothesis $g_t(x)$
else ...

2 split D to C parts $D_c = \{(x_n, y_n) : b(x_n) = c\}$

two simple choices

• $C = 2$ (binary tree)
function DecisionTree(data $D = \{(x_n, y_n)\}_{n=1}^N$)
if termination criteria met
 return base hypothesis $g_t(x)$
else ...
 ② split D to C parts $D_c = \{(x_n, y_n): b(x_n) = c\}$

two simple choices
- $C = 2$ (binary tree)
- $g_t(x) = E_{in}$-optimal constant
function DecisionTree(data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$)
if termination criteria met
return base hypothesis $g_t(x)$
else ...
 2 split \mathcal{D} to C parts $\mathcal{D}_c = \{(x_n, y_n): b(x_n) = c\}$

two simple choices
- $C = 2$ (binary tree)
- $g_t(x) = E_{\text{in}}$-optimal constant
 - binary/multiclass classification (0/1 error): majority of $\{y_n\}$
function DecisionTree(data \(D = \{(x_n, y_n)\}_{n=1}^N \))
if termination criteria met
 return base hypothesis \(g_t(x) \)
else ...
 2 split \(D \) to \(C \) parts \(D_c = \{(x_n, y_n) : b(x_n) = c\} \)

two simple choices

- \(C = 2 \) (binary tree)
- \(g_t(x) = E_{in}\text{-optimal constant} \)
 - binary/multiclass classification (0/1 error): majority of \(\{y_n\} \)
 - regression (squared error): average of \(\{y_n\} \)
function DecisionTree(data $D = \{(x_n, y_n)\}_{n=1}^N$)

if termination criteria met
 return base hypothesis $g_t(x)$
else ...

2 split D to C parts $D_c = \{(x_n, y_n): b(x_n) = c\}$

two simple choices

- $C = 2$ (binary tree)
- $g_t(x) = E_{\text{in}}$-optimal constant
 - binary/multiclass classification (0/1 error): majority of $\{y_n\}$
 - regression (squared error): average of $\{y_n\}$

 disclaimer:
C&RT here is based on selected components of **CART**TM of California Statistical Software
function DecisionTree(data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N}$)
if termination criteria met
 return base hypothesis $g_t(x) = E_{\text{in}}$-optimal constant
else ...
 1 learn branching criteria $b(x)$
 2 split \mathcal{D} to 2 parts $\mathcal{D}_c = \{(x_n, y_n): b(x_n) = c\}$
Branching in C&RT: Purifying

function DecisionTree(data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N}$)
if termination criteria met
 return base hypothesis $g_t(x) = E_{in}$-optimal constant
else ...
 1. learn branching criteria $b(x)$
 2. split \mathcal{D} to 2 parts $\mathcal{D}_c = \{(x_n, y_n) : b(x_n) = c\}$

more simple choices
function DecisionTree(data \(\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N} \))

if termination criteria met
 return base hypothesis \(g_t(x) = E_{in}\)-optimal constant
else ...
 1. learn branching criteria \(b(x) \)
 2. split \(\mathcal{D} \) to 2 parts \(\mathcal{D}_c = \{(x_n, y_n) : b(x_n) = c\} \)

more simple choices
- simple internal node for \(C = 2 \): \(\{1, 2\}\)-output decision stump
Branching in C&RT: Purifying

function DecisionTree(data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N}$)
if termination criteria met
 return base hypothesis $g_t(x) = E_{in}$-optimal constant
else ...
 1. learn branching criteria $b(x)$
 2. split \mathcal{D} to 2 parts $\mathcal{D}_c = \{(x_n, y_n): b(x_n) = c\}$

more simple choices

- simple internal node for $C = 2$: $\{1, 2\}$-output decision stump
- ‘easier’ sub-tree: branch by purifying
Branching in C&RT: Purifying

function DecisionTree(data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$)

if termination criteria met
 return base hypothesis $g_t(x) = E_{in}$-optimal constant
else ...

1. learn branching criteria $b(x)$
2. split \mathcal{D} to 2 parts $\mathcal{D}_c = \{(x_n, y_n): b(x_n) = c\}$

more simple choices

- simple internal node for $C = 2$: $\{1, 2\}$-output decision stump
- ‘easier’ sub-tree: branch by purifying

$$b(x) = \arg\min_{h(x)} \sum_{c=1}^2 |\mathcal{D}_c \text{ with } h| \cdot \text{impurity}(\mathcal{D}_c \text{ with } h)$$
function DecisionTree(data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N}$)
if termination criteria met
 return base hypothesis $g_t(x) = E_{in}$-optimal constant
else ...
 1. learn branching criteria $b(x)$
 2. split \mathcal{D} to 2 parts $\mathcal{D}_c = \{(x_n, y_n): b(x_n) = c\}$

more simple choices
- simple internal node for $C = 2$: $\{1, 2\}$-output decision stump
- ‘easier’ sub-tree: branch by purifying

$$b(x) = \arg\min_{\text{decision stumps } h(x)} \sum_{c=1}^{2} |\mathcal{D}_c \text{ with } h| \cdot \text{impurity}(\mathcal{D}_c \text{ with } h)$$

C&RT: bi-branching by purifying
Impurity Functions

by E_{in} of optimal constant

- regression error: $\text{impurity}(D) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \bar{y})^2$ with $\bar{y} = \text{average of } \{y_n\}$
- classification error: $\text{impurity}(D) = \frac{1}{N} \sum_{n=1}^{N} J_{y_n \neq y^*} K$ with $y^* = \text{majority of } \{y_n\}$
- Gini index: $1 - \frac{1}{K} \sum_{k=1}^{K} \left(\frac{\sum_{n=1}^{N} J_{y_n = k}}{N} \right)^2$ for all k considered together
- classification error: $1 - \max_{1 \leq k \leq K} \frac{\sum_{n=1}^{N} J_{y_n = k}}{N}$ — optimal $k = y^*$ only

popular choices: Gini for classification, regression error for regression
Impurity Functions

by E_{in} of optimal constant

- regression error:

$$\text{impurity}(D) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \bar{y})^2$$

with $\bar{y} = \text{average of } \{y_n\}$
Impurity Functions by E_{in} of optimal constant

- **regression error:**
 \[
 \text{impurity}(\mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \bar{y})^2
 \]
 with $\bar{y} = \text{average of } \{y_n\}$

- **classification error:**
 \[
 \text{impurity}(\mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} [y_n \neq y^*]
 \]
 with $y^* = \text{majority of } \{y_n\}$
Impurity Functions

by E_{in} of optimal constant

- regression error:

$$\text{impurity}(D) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \bar{y})^2$$

with $\bar{y} = \text{average of } \{y_n\}$

- classification error:

$$\text{impurity}(D) = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}[y_n \neq y^*]$$

with $y^* = \text{majority of } \{y_n\}$

for classification
by E_{in} of optimal constant

- regression error:
 \[
 \text{impurity}(D) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \bar{y})^2
 \]
 with $\bar{y} = \text{average of } \{y_n\}$

- classification error:
 \[
 \text{impurity}(D) = \frac{1}{N} \sum_{n=1}^{N} [y_n \neq y^*]
 \]
 with $y^* = \text{majority of } \{y_n\}$

for classification

- classification error:
 \[
 1 - \max_{1 \leq k \leq K} \frac{\sum_{n=1}^{N} [y_n = k]}{N}
 \]
 —optimal $k = y^*$ only
Impurity Functions

by E_{in} of optimal constant

- **regression error:**
 \[
 \text{impurity}(D) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \bar{y})^2
 \]
 with $\bar{y} = \text{average of } \{y_n\}$

- **classification error:**
 \[
 \text{impurity}(D) = \frac{1}{N} \sum_{n=1}^{N} [y_n \neq y^*]
 \]
 with $y^* = \text{majority of } \{y_n\}$

for classification

- **Gini index:**
 \[
 1 - \sum_{k=1}^{K} \left(\frac{\sum_{n=1}^{N} [y_n = k]}{N} \right)^2
 \]
 —all k considered together

- **classification error:**
 \[
 1 - \max_{1 \leq k \leq K} \frac{\sum_{n=1}^{N} [y_n = k]}{N}
 \]
 —optimal $k = y^*$ only
Impurity Functions

by E_{in} of optimal constant

- **regression error:**
 \[
 \text{impurity}(\mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} (y_n - \bar{y})^2
 \]
 with $\bar{y} =$ average of $\{y_n\}$

- **classification error:**
 \[
 \text{impurity}(\mathcal{D}) = \frac{1}{N} \sum_{n=1}^{N} [y_n \neq y^*]
 \]
 with $y^* =$ majority of $\{y_n\}$

for classification

- **Gini index:**
 \[
 1 - \sum_{k=1}^{K} \left(\frac{\sum_{n=1}^{N} [y_n = k]}{N} \right)^2
 \]
 —all k considered together

- **classification error:**
 \[
 1 - \max_{1 \leq k \leq K} \frac{\sum_{n=1}^{N} [y_n = k]}{N}
 \]
 —optimal $k = y^*$ only

popular choices: **Gini** for classification, **regression error** for regression
function DecisionTree(data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N}$)
if termination criteria met
 return base hypothesis $g_t(x) = \text{E}_{\text{in}}$-optimal constant
else ...

 1. learn branching criteria

 $b(x) = \arg\min_{\text{decision stumps } h(x)} \sum_{c=1}^{2} |\mathcal{D}_c \text{ with } h| \cdot \text{impurity}(\mathcal{D}_c \text{ with } h)$

‘forced’ to terminate when

• all y_n the same: impurity = 0
• all x_n the same: no decision stumps

C&RT: fully-grown tree with constant leaves that come from bi-branching by purifying
Termination in C&RT

function DecisionTree(data $D = \{(x_n, y_n)\}_{n=1}^N$)
if termination criteria met
 return base hypothesis $g_t(x) = E_{\text{in}}$-optimal constant
else ...
 1 learn branching criteria

$b(x) = \arg\min_{\text{decision stumps } h(x)} \sum_{c=1}^{2} |D_c \text{ with } h| \cdot \text{impurity}(D_c \text{ with } h)$

‘forced’ to terminate when
- all y_n the same: $\text{impurity} = 0 \implies g_t(x) = y_n$
Termination in C&RT

function DecisionTree(data $D = \{(x_n, y_n)\}_{n=1}^N$)
if termination criteria met
 return base hypothesis $g_t(x) = E_{\text{in}}$-optimal constant
else ...
 1. learn branching criteria

$$b(x) = \arg\min_{\text{decision stumps } h(x)} \sum_{c=1}^2 |D_c \text{ with } h| \cdot \text{impurity}(D_c \text{ with } h)$$

'forced' to terminate when
- all y_n the same: $\text{impurity} = 0 \implies g_t(x) = y_n$
- all x_n the same: no decision stumps
Termination in C&RT

function DecisionTree(data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$)
if termination criteria met
 return base hypothesis $g_t(x) = E_{in}$-optimal constant
else ...
 1. learn branching criteria

$$b(x) = \arg\min_{\text{decision stumps } h(x)} \sum_{c=1}^2 |\mathcal{D}_c \text{ with } h| \cdot \text{impurity}(\mathcal{D}_c \text{ with } h)$$

‘forced’ to terminate when
- all y_n the same: $\text{impurity} = 0 \implies g_t(x) = y_n$
- all x_n the same: no decision stumps

C&RT: fully-grown tree with constant leaves that come from bi-branching by purifying
For the Gini index, \(1 - \sum_{k=1}^{K} \left(\frac{\sum_{n=1}^{N} [y_n=k]}{N} \right)^2 \). Consider \(K = 2 \), and let
\(\mu = \frac{N_1}{N} \), where \(N_1 \) is the number of examples with \(y_n = 1 \). Which of the following formula of \(\mu \) equals the Gini index in this case?

1. \(2\mu (1 - \mu) \)
2. \(2\mu^2 (1 - \mu) \)
3. \(2\mu (1 - \mu)^2 \)
4. \(2\mu^2 (1 - \mu)^2 \)
For the Gini index, \(1 - \sum_{k=1}^{K} \left(\frac{\sum_{n=1}^{N} [y_n=k]}{N} \right)^2\). Consider \(K = 2\), and let \(\mu = \frac{N_1}{N}\), where \(N_1\) is the number of examples with \(y_n = 1\). Which of the following formula of \(\mu\) equals the Gini index in this case?

1. \(2\mu(1 - \mu)\)
2. \(2\mu^2(1 - \mu)\)
3. \(2\mu(1 - \mu)^2\)
4. \(2\mu^2(1 - \mu)^2\)

Reference Answer: 1

Simplify \(1 - (\mu^2 + (1 - \mu)^2)\) and the answer should pop up.
function DecisionTree(data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{N}$)

if cannot branch anymore
 return $g_t(x) = E_{\text{in}}$-optimal constant
else
 1. learn branching criteria

 $b(x) = \arg\min_{\text{decision stumps } h(x)} \sum_{c=1}^{2} |\mathcal{D}_c \text{ with } h| \cdot \text{impurity}(\mathcal{D}_c \text{ with } h)$

 2. split \mathcal{D} to 2 parts $\mathcal{D}_c = \{(x_n, y_n): b(x_n) = c\}$

 3. build sub-tree $G_c \leftarrow \text{DecisionTree}(\mathcal{D}_c)$

 4. return $G(x) = \sum_{c=1}^{2} \left[b(x) = c \right] G_c(x)$

easily handle binary classification, regression, & multi-class classification
Basic C&RT Algorithm

function DecisionTree(data \(\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N \))
if cannot branch anymore
 return \(g_t(x) = E_{\text{in-optimal}} \) constant
else
 \begin{enumerate}
 \item learn branching criteria
 \begin{align*}
 b(x) &= \text{argmin} \sum_{c=1}^{2} |\mathcal{D}_c \text{ with } h| \cdot \text{impurity}(\mathcal{D}_c \text{ with } h) \\
 \end{align*}
 \item split \(\mathcal{D} \) to 2 parts \(\mathcal{D}_c = \{(x_n, y_n) : b(x_n) = c\} \)
 \item build sub-tree \(G_c \leftarrow \text{DecisionTree}(\mathcal{D}_c) \)
 \item return \(G(x) = \sum_{c=1}^{2} \left[b(x) = c \right] G_c(x) \)
 \end{enumerate}

easily handle binary classification, regression, \& multi-class classification
Regularization by Pruning

fully-grown tree: \(E_{\text{in}}(G) = 0 \) if all \(x_n \) different
Regularization by Pruning

fully-grown tree: $E_{in}(G) = 0$ if all x_n different
but overfit (large E_{out}) because low-level trees built with small D_c
Regularization by Pruning

fully-grown tree: \(E_{\text{in}}(G) = 0 \) if all \(x_n \) different but overfit (large \(E_{\text{out}} \)) because low-level trees built with small \(D_c \)

- need a regularizer, say, \(\Omega(G) = \text{NumberOfLeaves}(G) \)
Regularization by Pruning

fully-grown tree: $E_{in}(G) = 0$ if all x_n different

but **overfit** (large E_{out}) because **low-level trees built with small** D_c

- need a **regularizer**, say, $\Omega(G) = \text{NumberOfLeaves}(G)$
- want **regularized** decision tree:

$$\arg\min_{\text{all possible } G} E_{in}(G) + \lambda \Omega(G)$$
Regularization by Pruning

fully-grown tree: $E_{\text{in}}(G) = 0$ if all x_n different

but **overfit** (large E_{out}) because **low-level trees built with small D_c**

- need a **regularizer**, say, $\Omega(G) = \text{NumberOfLeaves}(G)$
- want **regularized** decision tree:

$$\arg\min_{\text{all possible } G} E_{\text{in}}(G) + \lambda \Omega(G)$$

—called **pruned** decision tree
Regularization by Pruning

fully-grown tree: \(E_{in}(G) = 0 \) if all \(x_n \) different but overfit (large \(E_{out} \)) because low-level trees built with small \(D_c \)

- need a **regularizer**, say, \(\Omega(G) = \text{NumberOfLeaves}(G) \)
- want **regularized** decision tree:

\[
\arg\min_{\text{all possible } G} \ E_{in}(G) + \lambda \Omega(G)
\]

—called **pruned** decision tree

- cannot enumerate all possible \(G \) computationally:
 —often consider only
Regularization by Pruning

fully-grown tree: $E_{\text{in}}(G) = 0$ if all x_n different
but **overfit** (large E_{out}) because **low-level trees built with small** D_c

- need a **regularizer**, say, $\Omega(G) = \text{NumberOfLeaves}(G)$
- want **regularized** decision tree:

$$\arg\min \ E_{\text{in}}(G) + \lambda \Omega(G)$$

—called **pruned** decision tree

- cannot enumerate all possible G computationally:
 —often consider only
 - $G^{(0)} = \text{fully-grown tree}$
Regularization by Pruning

fully-grown tree: $E_{\text{in}}(G) = 0$ if all x_n different but overfit (large E_{out}) because low-level trees built with small D_c

- need a **regularizer**, say, $\Omega(G) = \text{NumberOfLeaves}(G)$
- want **regularized** decision tree:
 \[
 \text{argmin}_{\text{all possible } G} \quad E_{\text{in}}(G) + \lambda \Omega(G)
 \]
 —called **pruned** decision tree

- cannot enumerate all possible G computationally:
 —often consider only
 - $G^{(0)} = \text{fully-grown tree}$
 - $G^{(i)} = \text{argmin}_G E_{\text{in}}(G)$ such that G is one-leaf removed from $G^{(i-1)}$
Regularization by Pruning

fully-grown tree: $E_{\text{in}}(G) = 0$ if all x_n different
but overfit (large E_{out}) because low-level trees built with small D_c

- need a regularizer, say, $\Omega(G) = \text{NumberofLeaves}(G)$
- want regularized decision tree:

$$\text{argmin}_{\text{all possible } G} E_{\text{in}}(G) + \lambda \Omega(G)$$

—called pruned decision tree

- cannot enumerate all possible G computationally:
 —often consider only

 - $G^{(0)} = \text{fully-grown tree}$
 - $G^{(i)} = \text{argmin}_G E_{\text{in}}(G)$ such that G is one-leaf removed from $G^{(i-1)}$

systematic choice of λ?
Regularization by Pruning

- fully-grown tree: $E_{in}(G) = 0$ if all x_n different but overfit (large E_{out}) because low-level trees built with small D_c

- need a regularizer, say, $\Omega(G) = \text{NumberOfLeaves}(G)$
- want regularized decision tree:

$$\arg\min_{\text{all possible } G} E_{in}(G) + \lambda \Omega(G)$$

—called pruned decision tree

- cannot enumerate all possible G computationally:
 —often consider only
 - $G^{(0)}$ = fully-grown tree
 - $G^{(i)} = \arg\min_G E_{in}(G)$ such that G is one-leaf removed from $G^{(i-1)}$

systematic choice of λ? validation
Branching on Categorical Features

numerical features

blood pressure:
130, 98, 115, 147, 120
Branching on Categorical Features

Numerical Features

Blood Pressure:
130, 98, 115, 147, 120

Branching for Numerical Decision Stump

\[b(x) = \left[x_i \leq \theta \right] + 1 \]

with \(\theta \in \mathbb{R} \)

C&RT (General Decision Trees):

Handles categorical features easily
Branching on Categorical Features

numerical features
- blood pressure: 130, 98, 115, 147, 120

categorical features
- major symptom: fever, pain, tired, sweaty

branching for numerical decision stump

\[
b(x) = \left\lfloor x_i \leq \theta \right\rfloor + 1
\]

with \(\theta \in \mathbb{R} \)
Branching on Categorical Features

Numerical Features
- Blood pressure: 130, 98, 115, 147, 120

Branching for Numerical Decision Stump
\[b(x) = \lfloor x_i \leq \theta \rfloor + 1 \]
- with \(\theta \in \mathbb{R} \)

Categorical Features
- Major symptom: fever, pain, tired, sweaty

Branching for Categorical Decision Subset
- \(S \subset \{1, 2, \ldots, K\} \)
Branching on Categorical Features

<table>
<thead>
<tr>
<th>Numerical Features</th>
<th>Categorical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure: 130, 98, 115, 147, 120</td>
<td>Major symptom: fever, pain, tired, sweaty</td>
</tr>
</tbody>
</table>

Branching for Numerical Features

Decision Stump

\[b(x) = \left[x_i \leq \theta \right] + 1 \]

with \(\theta \in \mathbb{R} \)

Branching for Categorical Features

Decision Subset

\[b(x) = \left[x_i \in S \right] + 1 \]

with \(S \subset \{1, 2, \ldots, K\} \)
Branching on Categorical Features

numerical features
- blood pressure: 130, 98, 115, 147, 120

branching for numerical decision stump
- \(b(x) = [x_i \leq \theta] + 1 \)
- with \(\theta \in \mathbb{R} \)

categorical features
- major symptom: fever, pain, tired, sweaty

branching for categorical decision subset
- \(b(x) = [x_i \in S] + 1 \)
- with \(S \subset \{1, 2, \ldots, K\} \)

C&RT (& general decision trees):
- handles categorical features easily
Missing Features by Surrogate Branch

possible $b(x) = [\text{weight} \leq 50\text{kg}]$
Missing Features by Surrogate Branch

possible \(b(x) = [\text{weight} \leq 50\text{kg}] \)

If \texttt{weight} missing during prediction:

• what would human do?
 • go get weight
 • or, use threshold on height instead, because threshold on height \(\approx \) threshold on weight

• surrogate branch:
 • maintain surrogate branch \(b_1(x), b_2(x), ... \approx \text{best branch} b(x) \)
 • allow missing feature for \(b(x) \) during prediction by using surrogate instead
Missing Features by Surrogate Branch

possible \(b(x) = [\text{weight} \leq 50\text{kg}] \)

if \text{weight} missing during prediction:
 - what would human do?
Missing Features by Surrogate Branch

possible $b(x) = [\text{weight} \leq 50\text{kg}]$

if \text{weight} missing during prediction:
 - what would human do?
 - go get \text{weight}
Missing Features by Surrogate Branch

possible \(b(x) = [\text{weight} \leq 50\text{kg}] \)

if \text{weight} missing during prediction:

 • what would human do?

 • go get \text{weight}

 • or, use threshold on height instead, because

 threshold on height \(\approx \) threshold on weight
Missing Features by Surrogate Branch

possible \(b(x) = [\text{weight} \leq 50\text{kg}] \)

if \text{weight} missing during prediction:

 - what would human do?

 - go get \text{weight}

 - or, use threshold on height instead, because threshold on height \(\approx \) threshold on weight

 - surrogate branch:

 - maintain surrogate branch \(b_1(x), b_2(x), \ldots \approx \) best branch \(b(x) \) during training
Missing Features by Surrogate Branch

possible \(b(\mathbf{x}) = [\text{weight} \leq 50\text{kg}] \)

if \textit{weight} missing during prediction:

- what would human do?
 - go get \textit{weight}
 - or, use threshold on height instead, because threshold on height \(\approx \) threshold on weight

- surrogate branch:
 - maintain surrogate branch \(b_1(\mathbf{x}), b_2(\mathbf{x}), \ldots \approx \) best branch \(b(\mathbf{x}) \) during training
 - allow missing feature for \(b(\mathbf{x}) \) during prediction by using surrogate instead
Missing Features by Surrogate Branch

possible $b(x) = [\text{weight} \leq 50\text{kg}]$

if `weight` missing during prediction:

- what would human do?
 - go get `weight`
 - or, use threshold on height instead, because
 threshold on height \approx threshold on weight

- surrogate branch:
 - maintain surrogate branch $b_1(x), b_2(x), \ldots \approx$ best branch $b(x)$
 during training
 - allow missing feature for $b(x)$ during prediction by using surrogate
 instead

C&RT: handles **missing features easily**
For a categorical branching criteria $b(x) = \left[x_i \in S \right] + 1$ with $S = \{1, 6\}$. Which of the following is the explanation of the criteria?

1. if i-th feature is of type 1 or type 6, branch to first sub-tree; else branch to second sub-tree
2. if i-th feature is of type 1 or type 6, branch to second sub-tree; else branch to first sub-tree
3. if i-th feature is of type 1 and type 6, branch to second sub-tree; else branch to first sub-tree
4. if i-th feature is of type 1 and type 6, branch to first sub-tree; else branch to second sub-tree
For a categorical branching criteria $b(x) = \left\lfloor x_i \in S \right\rfloor + 1$ with $S = \{1, 6\}$. Which of the following is the explanation of the criteria?

1. if i-th feature is of type 1 or type 6, branch to first sub-tree; else branch to second sub-tree

2. if i-th feature is of type 1 or type 6, branch to second sub-tree; else branch to first sub-tree

3. if i-th feature is of type 1 and type 6, branch to second sub-tree; else branch to first sub-tree

4. if i-th feature is of type 1 and type 6, branch to first sub-tree; else branch to second sub-tree

Reference Answer: 2

Note that ‘$\in S$’ is an ‘or’-style condition on the elements of S in human language.
A Simple Data Set

C&RT

AdaBoost-Stump

C&RT: ‘divide-and-conquer’
A Complicated Data Set

C&RT

AdaBoost-Stump
Decision Tree in Action

A Complicated Data Set

C&RT

AdaBoost-Stump
A Complicated Data Set

C&RT

AdaBoost-Stump
A Complicated Data Set

C&RT

AdaBoost-Stump

C&RT: even more efficient than AdaBoost-Stump
A Complicated Data Set

C&RT

AdaBoost-Stump

C&RT: even more efficient than AdaBoost-Stump
Practical Specialties of C&RT

- human-explainable
Practical Specialties of C&RT

- human-explainable
- multiclass easily
Practical Specialties of C&RT

- human-explainable
- multiclass easily
- categorical features easily
Practical Specialties of C&RT

- human-explainable
- multiclass easily
- categorical features easily
- missing features easily
Practical Specialties of C&RT

- human-explainable
- multiclass easily
- categorical features easily
- missing features easily
- efficient non-linear training (and testing)
Practical Specialties of C&RT

- human-explainable
- multiclass easily
- categorical features easily
- missing features easily
- efficient non-linear training (and testing)

—almost no other learning model share all such specialties, except for other decision trees
Practical Specialties of C&RT

- human-explainable
- multiclass easily
- categorical features easily
- missing features easily
- efficient non-linear training (and testing)

—almost no other learning model share all such specialties, except for other decision trees

another popular decision tree algorithm: C4.5, with different choices of heuristics
Fun Time

Which of the following is not a specialty of C&RT without pruning?

1. handles missing features easily
2. produces explainable hypotheses
3. achieves low E_{in}
4. achieves low E_{out}

Reference Answer:
The first two choices are easy; the third comes from the fact that fully grown C&RT greedy minimizes E_{in} (almost always to 0). But as you may imagine, overfitting may happen and E_{out} may not always be low.

Hsuan-Tien Lin (NTU CSIE)
Fun Time

Which of the following is not a specialty of C&RT without pruning?

1. handles missing features easily
2. produces explainable hypotheses
3. achieves low E_{in}
4. achieves low E_{out}

Reference Answer: 4

The first two choices are easy; the third comes from the fact that fully grown C&RT greedy minimizes E_{in} (almost always to 0). But as you may imagine, overfitting may happen and E_{out} may not always be low.
Summary

1. Embedding Numerous Features: Kernel Models
2. Combining Predictive Features: Aggregation Models
3. Distilling Implicit Features: Extraction Models

Lecture 9: Decision Tree
- Decision Tree Hypothesis: express path-conditional aggregation
- Decision Tree Algorithm: recursive branching until termination to base
- Decision Tree Heuristics in C&RT: pruning, categorical branching, surrogate
- Decision Tree in Action: explainable and efficient

- next: aggregation of aggregation?!