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Blending and Bagging

Roadmap

@ Embedding Numerous Features: Kernel Models

Lecture 6: Support Vector Regression

kernel ridge regression (dense) via
ridge regression + representer theorem;
support vector regression (sparse) via
regularized tube error + Lagrange dual

® Combining Predictive Features: Aggregation Models

Lecture 7: Blending and Bagging

Motivation of Aggregation
Uniform Blending

Linear and Any Blending
Bagging (Bootstrap Aggregation)

@ Distilling Implicit Features: Extraction Models
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Blending and Bagging Motivation of Aggregation

An Aggregation Story
Your T friends gy, - - - , g7 predicts whether stock will go up as gi(x). ]
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Blending and Bagging Motivation of Aggregation

An Aggregation Story
Your T friends gy, - - - , g7 predicts whether stock will go up as gi(x). J

You can ...

¢ select the most trust-worthy friend from their usual performance
—validation!

e mix the predictions from all your friends uniformly
—Ilet them vote!

e mix the predictions from all your friends non-uniformly
—let them vote, but give some more ballots

e combine the predictions conditionally
—if [t satisfies some condition] give some ballots to friend t

aggregation models: mix or combine
hypotheses (for better performance) J
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Aaareaation with Math Notations

Your T friends gy, - - - , gr predicts whether stock will go up as gi(x). J

) the most trust-worthy friend from their usual performance

G(x) = g:.(x) with t, = argmin,cq 5 ... 1y Eval(9;)
o the predictions from all your friends uniformly
G(x) = sign(zl,T:1 1 -gt(x))
. the predictions from all your friends non-uniformly
G(x) = sign(ZfT:1 o - gt(x)> with oy > 0
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e include top =1

o the predictions conditionally
G(x) = sign( L1, a:(x) - gr(x)) with qi(x) = 0

e include D gi(X) = ot

aggregation models: a rich family J
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Blending and Bagging Motivation of Aggregation

Recall: Selection by Validation

G(X) = gr.(x) with t, = argmin Eys(g; )
te{1,2,-,T}

e simple and popular

» what if use Ei,(g;) instead of E4(g; )?
complexity price on d,c, remember? :-)

» need one strong g, to guarantee small E,, (and small Eqyt)

selection:
rely on one strong hypothesis
aggregation:
can we do better with many
(possibly weaker) hypotheses?
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x

x X oo

x

Xy x

o

x % °

x
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Blending and Bagging Motivation of Aggregation

Why Might Aggregation Work?

o
X
x X o fe)
x
Xy x
x x X o°
¢ mix different weak ¢ mix different random-PLA
hypotheses uniformly hypotheses uniformly
—G(x) ‘strong’ —G(x) ‘moderate’
e aggregation e aggregation
— feature transform (?) — regularization (?)

proper aggregation —> better performance J
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Fun Time

Consider three decision stump hypotheses from R to {—1,+1}:
91(x) = sign(1 — x), g2(x) = sign(1 + x), g3(x) = —1. When mixing
the three hypotheses uniformly, what is the resulting G(x)?

O 2(x]<1] -1

O 2(x|>1] -1

®2[x<-1] -1

O 2[x>+1] -1
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Fun Time

Consider three decision stump hypotheses from R to {—1,+1}:
91(x) = sign(1 — x), g2(x) = sign(1 + x), g3(x) = —1. When mixing
the three hypotheses uniformly, what is the resulting G(x)?

O 2(x]<1] -1

O 2(x|>1] -1

®2[x<-1] -1

O2[x>+1] -1

Reference Answer: @

The ‘region’ that gets two positive votes
from gy and g is |x| < 1, and thus G(x) is
positive within the region only. We see that the
three decision stumps g; can be aggregated to
form a more sophisticated hypothesis G.
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uniform blending: known g;, each with 1 ballot
T

X) = sign (Z 1. gt(x)>
t=1

e same g; (autocracy):

as good as one single g;
o very different g; (diversity + democracy): x oo
majority can correct minority xx o
e similar results with uniform voting for x, ¥
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Uniform Blending (Voting) for Classification
uniform blending: known g;, each with 1 ballot
T

X) = sign (Z 1. gt(x)>
t=1

e same g; (autocracy):
as good as one single g;
. . : o
o very different g; (diversity + democracy): x °
majority can correct minority xx o
e similar results with uniform voting for x, ¥
multiclass . X o©
X
G(x) = argmax Z [9:(x) = K]
1<k<
how about regression? )
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Blending and Bagging Uniform Blending

Uniform Blending for Regression

1 T
GX) = — > ai(x)
t=1

e same g; (autocracy):
as good as one single g;
o very different g; (diversity + democracy):
some g:(x) > f(x), some g;(x) < f(x)
— average could be more accurate than individual

diverse hypotheses:

even simple uniform blending
can be better than any single hypothesis
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Theoretical Analysis of Uniform Blending

1 T
T th(x)
t=1
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Theoretical Analysis of Uniform Blending

1
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t=1
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Theoretical Analysis of Uniform Blending

1
Gx) ==+ > gi(x)
t=1
avg ((gi(x) — f(x))?) = avg (97 —2g:f + %)

9?) —2G°+G* + (G- 1)
9f —29:G+ G?) + (G- 1)
(9= G)?) +(G— 1)

(97
(97
= avg(gf) -G+ (G-
(97
(97
(

avg (Eou(gr) = avg (£(g: — G)?) + Eou(C)
+ Eout(G)

v
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Some Special g;
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® obtain g; by A(D;)

,
7 = m G=m 73~
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® obtain g; by A(D;)

_ . S
9 = Jm G-l 23~ 4D

avg (Eo(gr)) = avg (£(g: — 8)?) + Eou(d)
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Blending and Bagging Uniform Blending

Some Special g;
consider a virtual iterative process thatfort =1,2,..., T
© request size-N data D; from PV (i.i.d.)
® obtain g; by A(D;)
;
g = imG= lim ;

T—oo T

avg (Eo(gr)) = avg (£(g: — 8)?) + Eou(d)
expected performance of A = expected deviation to consensus
+performance of consensus

performance of consensus: called bias

expected deviation to consensus: called variance
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Blending and Bagging Uniform Blending

Some Special g;
consider a iterative process thatfort =1,2,..., T
© request size-N data D; from PN (i.i.d.)
® obtain g; by A(D;)
;
g = imG= lim ;

T—oo T

avg (Eou(g) = avg (£(g - 8)?) + Eou()
expected performance of A = expected deviation to consensus
+performance of consensus

performance of consensus: called bias

expected deviation to consensus: called variance

uniform blending:
reduces variance for more stable performance
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Blending and Bagging Uniform Blending

Consider applying uniform blending G(x) = lTZtT:1 gt(x) on linear
regression hypotheses g:(x) = innerprod(w;, x). Which of the following
property best describes the resulting G(x)?

© a constant function of x
® a linear function of x

® a quadratic function of x
@ none of the other choices




Blending and Bagging Uniform Blending

Consider applying uniform blending G(x) = lTZtT:1 gt(x) on linear
regression hypotheses g:(x) = innerprod(w;, x). Which of the following
property best describes the resulting G(x)?

© a constant function of x

® a linear function of x

® a quadratic function of x

O none of the other choices )

Reference Answer: @

.
. 1
G(x) = innerprod (T Zwt,x>

t=1

which is clearly a linear function of x. Note that
we write ‘innerprod’ instead of the usual
‘transpose’ notation to avoid symbol conflict
with T (number of hypotheses).

Hsuan-Tien Lin (NTU CSIE)
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linear blending: known g;, each to be given «; ballot

;
G(x) = sign{ > o gi(x) | with o, =0
t=1
computing ‘good’ o : min Ei, (o)

;>0
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Blending and Bagging Linear and Any Blending

Linear Blending
linear blending: known g;, each to be given «; ballot

;
G(x) = sign (Z n;-gt(x)> with o; > 0

t=1

computing ‘good’ o : mirg) En(a)
o>

linear blending for regression

T

N
N
min 5> | Yo > 01gi(xa)

n=1 t=1
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Blending and Bagging Linear and Any Blending

Linear Blending
linear blending: known g;, each to be given «; ballot

;
G(x) = sign (Z nf-gt(x)> with o; > 0

t=1

computing ‘good’ ay = min Ein()

(\r

linear blending for regression LinReg + transformation

T

N
min 1N S yn— D ciaixn) min Z Yn— Z Wii(Xn)

n=1 t=1
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Blending and Bagging Linear and Any Blending

Linear Blending
linear blending: known g;, each to be given «; ballot

;
G(x) = sign (Z nf-gt(x)> with o; > 0

t=1

computing ‘good’ a; = min Ein(c)

(\r

T

N
1
min S yn— Y cii(xn)

n=1 t=1

like two-level learning, remember? :-)
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linear blending: known g;, each to be given «; ballot
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G(x) = sign (Z nf-gt(x)> with o; > 0

t=1

computing ‘good’ ay = min Ein()

(\r

T

N
1
min S yn— Y cii(xn)

n=1 t=1

like two-level learning, remember? :-)

linear blending = LinModel + hypotheses as transform + J
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Blending and Bagging Linear and Any Blending

Linear Blending
linear blending: known g;, each to be given «; ballot

;
G(x) = sign (Z nf-gt(x)> with o; > 0

t=1

computing ‘good’ ay = min Ein()

(\r

T

N
1
min S yn— Y cii(xn)

n=1 t=1

like two-level learning, remember? :-)

linear blending = LinModel + hypotheses as transform + constraints J

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 12/23



Blending and Bagging Linear and Any Blending

Constraint on oy
linear blending = LinModel + hypotheses as transform + constraints:

T

N
. 1
min N;m yna;afgt(xn)
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. 1
LRV S 9 ST
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N T
. 1
LRV S 9 ST

t=1
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ifar <0 = gi(X) = || (—g(X))
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Blending and Bagging Linear and Any Blending

Constraint on oy
linear blending = LinModel + hypotheses as transform + constraints:

N T
. 1
LRV S 9 ST

t=1

linear blending for binary classification

ifo;<0 — Oqgt()() = ‘(},t‘ (—gt(X))
» negative o, for g; = positive || for —g;
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Blending and Bagging Linear and Any Blending

Constraint on oy
linear blending = LinModel + hypotheses as transform + constraints:

N T
. 1
LRV S 9 ST

t=1

linear blending for binary classification

ifar <0 = gi(X) = || (—g(X))

» negative o, for g; = positive || for —g;
e if you have a stock up/down classifier with 99% error, tell me!

)
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Blending and Bagging Linear and Any Blending

Constraint on oy
linear blending = LinModel + hypotheses as transform + constraints:

N T
. 1
LRV S 9 ST

t=1

linear blending for binary classification

ifar <0 = gi(X) = || (—g(X))

» negative o, for g; = positive || for —g;
e if you have a stock up/down classifier with 99% error, tell me!

:-) )
in practice, often
linear blending = LinModel + hypotheses as transform + coestainis

V.
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by minimum Ej,
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—best of best, paying dyc ( U Ht)
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—by setting o; = [Eva(9; ) smallest]
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Blending and Bagging Linear and Any Blending

Linear Blending versus Selection

in practice, often
g1 € H‘I:QZ 67{27"'797' GHT
by minimum Ej,

e recall: selection by minimum E;,
-

—best of best, paying dyc ( U Ht>
=l

¢ recall: linear blending includes selection as special case
—by setting «; = [Eval(g; ) smallest]
e complexity price of linear blending with £, (aggregation of best):

b
~dve ( U Ht)
t=1

like selection, blending practically done with
(Eval instead of Ej,) + (g; from minimum Etram)J
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Blending and Bagging Linear and Any Blending

Any Blending

Given g,, g, , ..., g7 from Dy, transform (X, y») in Dy, to
(zn = @ (Xp), ¥n), where @ (x) = (g; (X), ..., 97 (X))

Linear Blending
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Given g,, g, , ..., g7 from Dy, transform (X, y») in Dy, to
(zn = ® (Xp), ¥n), where & (x) = (g; (X),...,97(X))

Linear Blending

© compute o
= LinearModeI({(Zn,Yn)})
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Any Blending

Given g,, g, , ..., g7 from Dy, transform (X, y») in Dy, to
(zn = @ (Xp), ¥n), where @ (x) = (g; (X), ..., 97 (X))

Linear Blending Any Blending ( )

© compute o
= LinearModeI({(Zn,}’n)})

9 return GLINB(X) =
LinearHypothesis,, (®(x)),
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Any Blending

Given g,, g, , ..., g7 from Dy, transform (X, y») in Dy, to
(zn = @ (Xp), ¥n), where @ (x) = (g; (X), ..., 97 (X))

Linear Blending Any Blending ( )
© compute o @ compute J
= LinearModeI({(zn,yn)}) = AnyModel ({(Zn,}’n)})

9 return GLINB(X) =
LinearHypothesis,, (®(x)),

where ®(x) = (91(x), ..., 97(X)) )
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Given g,, g, , ..., g7 from Dy, transform (X, y») in Dy, to
(zn = @ (Xp), ¥n), where @ (x) = (g; (X), ..., 97 (X))

Linear Blending Any Blending ( )
© compute o @ compute J
= LinearModeI({(zn,yn)}) = AnyModel ({(Zn,}’n)})
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Blending and Bagging Linear and Any Blending

Any Blending

Given g,, g, , ..., g7 from Dy, transform (X, y») in Dy, to
(zn = ® " (Xn), ¥n), where @~ (x) = (9; (X),...,97(X))

Linear Blending Any Blending ( )
© compute « compute g
= LinearModeI({(zn,yn)}) = AnyModel ({(Zn,}’n)}>
9 return GLINB(X) = I‘eturn GANYB(X) = g(d’(X)),
LinearHypothesis,, (®(x)),
where ®(x) = (g1(X),...,97(x)) J
any blending:

o powerful, achieves conditional blending
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Blending and Bagging Linear and Any Blending

Any Blending

Given g,, g, , ..., g7 from Dy, transform (X, y») in Dy, to
(zn = ® " (Xn), ¥n), where @~ (x) = (9; (X),...,97(X))

Linear Blending Any Blending ( )
© compute « compute g
= LinearModeI({(zn,yn)}) = AnyModel ({(Zn,}’n)}>
9 return GLINB(X) = I‘eturn GANYB(X) = g(d’(X)),
LinearHypothesis,, (®(x)),
where ®(x) = (g1(X),...,97(x)) J
any blending:

o powerful, achieves conditional blending
o but danger of overfitting, as always :~(
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Blending and Bagging Linear and Any Blending

Blending in Practice

Single )

Models Test-Set Post-
= Val-Set Blending Processing

Data-Set

Blending  pm)

(Chen et al., A linear ensemble of individual and blended
models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU
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Blending in Practice

Single ——

Test-Set Post-
Models
=> Val-Set Blending Processing

Data-Set
Blending  pm)

(Chen et al., A linear ensemble of individual and blended
models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

¢ validation set blending: a special any blending model
Eiest (squared): 519.45 = 456.24
—helped secure the lead in last two weeks
« test set blending: linear blending using Eiest
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Blending in Practice

Single ——

Test-Set Post-
Models
=> Val-Set Blending Processing

Data-Set
Blending  pm)

(Chen et al., A linear ensemble of individual and blended
models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

¢ validation set blending: a special any blending model
Eiest (squared): 519.45 = 456.24
—helped secure the lead in last two weeks
« test set blending: linear blending using Eiest
Eiest (squared): 456.24 —> 442.06
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Blending and Bagging Linear and Any Blending

Blending in Practice

Single ——

Test-Set Post-
Models
=> Val-Set Blending Processing

Data-Set
Blending )

(Chen et al., A linear ensemble of individual and blended
models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

¢ validation set blending: a special any blending model
Eiest (squared): 519.45 = 456.24
—helped secure the lead in last two weeks
« test set blending: linear blending using Eiest
Eiest (squared): 456.24 —> 442.06
—helped turn the tables in last hour

Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/23



Blending and Bagging Linear and Any Blending

Blending in Practice

Single ——

Test-Set Post-
Models
=> Val-Set Blending Processing

Data-Set
Blending  pm)

(Chen et al., A linear ensemble of individual and blended
models for music rating prediction, 2012)

KDDCup 2011 Track 1: World Champion Solution by NTU

¢ validation set blending: a special any blending model
Eiest (squared): 519.45 = 456.24
—helped secure the lead in last two weeks
« test set blending: linear blending using Eiest
Eiest (squared): 456.24 —> 442.06
—helped turn the tables in last hour

blending ‘useful’ in practice,

despite the computational burden
Hsuan-Tien Lin (NTU CSIE) Machine Learning Techniques 16/23



Blending and Bagging Linear and Any Blending

Fun Time

Consider three decision stump hypotheses from R to {—1,+1}:

91(x) = sign(1 — x), go(x) = sign(1 + x), gs(x) = —1. When x =0,
what is the resulting ®(x) = (g1(x), g2(x), g3(x)) used in the returned
hypothesis of linear/any blending?

O (+1,+1,+1)




Blending and Bagging Linear and Any Blending

Fun Time

Consider three decision stump hypotheses from R to {—1,+1}:

g1(x) = sign(1 — x), g=(x) = sign(1 + x), g3(x) = —1. When x = 0,
what is the resulting ®(x) = (g1(x), g2(x), g3(x)) used in the returned
hypothesis of linear/any blending?

O (+1,+1,+1)

Reference Answer: @
Too easy? :-)
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Blending and Bagging Bagging (Bootstrap Aggregation)

What We Have Done
blending: aggregate after getting g;;

aggregation type || blending |
uniform voting/averaging
non-uniform linear
conditional stacking
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learning: aggregate as well as getting g;
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What We Have Done
blending: aggregate after getting g;;
learning: aggregate as well as getting g;

aggregation type || blending | learning
uniform voting/averaging ?
non-uniform linear ?
conditional stacking ?

learning g; for uniform aggregation: diversity important
o diversity by different models: g1 € H1,9> € Ho,...,97 € HT

« diversity by different parameters: GD with » = 0.001, 0.01, ..., 10

e diversity by algorithmic randomness:
random PLA with different random seeds
e diversity by data randomness:
within-cross-validation hypotheses g,

next: diversity by data randomness without g~ ]
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Blending and Bagging Bagging (Bootstrap Aggregation)

Revisit of Bias-Variance

expected performance of A = expected deviation to consensus
+performance of consensus
consensus § = expected g; from D; ~ PN
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Revisit of Bias-Variance

expected performance of A = expected deviation to consensus
+performance of consensus
consensus § = expected g; from D; ~ PN

e consensus more stable than direct A(D),
but comes from many more D; than the D on hand
e want: approximate g by
e finite (large) T
o approximate g; = A(D;) from D; ~ PN using only D

bootstrapping: a statistical tool that
re-samples from D to ‘simulate’ D; J
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Bootstrap Aggregation

bootstrapping

bootstrap sample D;: re-sample N examples from D uniformly with
replacement
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Bootstrap Aggregation

bootstrapping

bootstrap sample D;: re-sample N examples from D uniformly with
replacement—can also use arbitrary N’ instead of original N

virtual aggregation

consider a virtual iterative
process thatfort=1,2,..., T

request size-N data D;
from PN (i.i.d.)

obtain g; by A(D;)

G = Uniform({g:})
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Bootstrap Aggregation

bootstrapping

bootstrap sample D;: re-sample N examples from D uniformly with
replacement—can also use arbitrary N’ instead of original N

virtual aggregation aggregation

consider a virtual iterative
process thatfort=1,2,..., T

request size-N data D;
from PN (i.i.d.)

obtain g; by A(D;)

G = Uniform({g:})

consider a physical iterative
process thatfort=1,2,..., T

© request size-N’ data D;
from bootstrapping

© obtain g; by A(D;)
G = Uniform({g:})

bootstrap aggregation (BAGging):
a simple meta algorithm
on top of base algorithm A
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Bagging Pocket in Action

Trocker = 1000; Tgae = 25

« very diverse g; from bagging
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Blending and Bagging Bagging (Bootstrap Aggregation)

Bagging Pocket in Action

Trocker = 1000; Tgae = 25

o very diverse g; from bagging
e proper non-linear boundary after aggregating binary classifiers J

bagging works reasonably well if base
algorithm sensitive to data randomness J
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Blending and Bagging Bagging (Bootstrap Aggregation)

Fun Time

When using bootstrapping to re-sample N examples @t from a data set
D with N examples, what is the probability of getting D; exactly the
same as D?

©®©o0 /NV=0
@1 /NN
® N /NN
@ NN /NN =1




Blending and Bagging Bagging (Bootstrap Aggregation)

Fun Time

When using bootstrapping to re-sample N examples @t from a data set
D with N examples, what is the probability of getting D; exactly the
same as D?

©0 /NV=0
@1 /NN
® N /NN
O NN /NN =1

Reference Answer: @

Consider re-sampling in an ordered manner for
N steps. Then there are (NN) possible
outcomes D;, each with equal probability. Most
importantly, (N!) of the outcomes are
permutations of the original D, and thus the
answer.

v
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Summary

@ Embedding Numerous Features: Kernel Models
® Combining Predictive Features: Aggregation Models

Lecture 7: Blending and Bagging

e Motivation of Aggregation
aggregated G strong and/or moderate
e Uniform Blending
diverse hypotheses, ‘one vote, one value’
e Linear and Any Blending
two-level learning with hypotheses as transform
e Bagging (Bootstrap Aggregation)
bootstrapping for diverse hypothesesJ

¢ next: getting more diverse hypotheses to make G strong

@ Distilling Implicit Features: Extraction Models
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