Lecture 16: Three Learning Principles

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science
& Information Engineering
National Taiwan University
(國立台灣大學資訊工程系)
Roadmap

1. When Can Machines Learn?
2. Why Can Machines Learn?
3. How Can Machines Learn?
4. How Can Machines Learn Better?

Lecture 15: Validation

(\textit{crossly}) reserve validation data to simulate testing procedure for \textit{model selection}

Lecture 16: Three Learning Principles

- Occam’s Razor
- Sampling Bias
- Data Snooping
- Power of Three
Occam’s Razor

An explanation of the data should be made as simple as possible, but no simpler.—Albert Einstein? (1879-1955)

entia non sunt multiplicanda praeter necessitatem
(entities must not be multiplied beyond necessity)
—William of Occam (1287-1347)

‘Occam’s razor’ for trimming down unnecessary explanation
Occam’s Razor for Learning

The simplest model that fits the data is also the most plausible.

Which one do you prefer? :-)

two questions:

1. What does it mean for a model to be simple?
2. How do we know that simpler is better?
Three Learning Principles

Occam’s Razor

Simple Model

Simple Hypothesis h
- $\Omega(h)$ ‘looks’ simple
- Specified by **few** parameters

Simple Model \mathcal{H}
- $\Omega(\mathcal{H})$ = not many
- Contains **small number of** hypotheses

Connection
- h specified by ℓ bits $\iff |\mathcal{H}|$ of size 2^ℓ
- $\Omega(h) \iff \Omega(\mathcal{H})$

Simple: **small hypothesis/model complexity**
in addition to **math proof** that you have seen, philosophically:

- simple \mathcal{H}
- \Rightarrow smaller $m_{\mathcal{H}}(N)$
- \Rightarrow less ‘likely’ to fit data perfectly $\frac{m_{\mathcal{H}}(N)}{2^N}$
- \Rightarrow more significant when fit happens

direct action: **linear first**;
always ask whether **data over-modeled**
Consider the decision stumps in \mathbb{R}^1 as the hypothesis set \mathcal{H}. Recall that $m_{\mathcal{H}}(N) = 2^N$. Consider 10 different inputs x_1, x_2, \ldots, x_{10} coupled with labels y_n generated iid from a fair coin. What is the probability that the data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^{10}$ is separable by \mathcal{H}?

1. \(\frac{1}{1024} \)
2. \(\frac{10}{1024} \)
3. \(\frac{20}{1024} \)
4. \(\frac{100}{1024} \)
Consider the decision stumps in \mathbb{R}^1 as the hypothesis set \mathcal{H}. Recall that $m_{\mathcal{H}}(N) = 2N$. Consider 10 different inputs x_1, x_2, \ldots, x_{10} coupled with labels y_n generated iid from a fair coin. What is the probability that the data $D = \{(x_n, y_n)\}_{n=1}^{10}$ is separable by \mathcal{H}?

1. $\frac{1}{1024}$
2. $\frac{10}{1024}$
3. $\frac{20}{1024}$
4. $\frac{100}{1024}$

Reference Answer: 3

Of all 1024 possible D, only $2N = 20$ of them is separable by \mathcal{H}.
Presidential Story

- 1948 US President election: Truman versus Dewey
- a newspaper phone-poll of how people voted, and set the title ‘Dewey Defeats Truman’ based on polling

who is this? :-}
The Big Smile Came from . . .

Truman, and yes he won

suspect of the mistake:
- editorial bug?—no
- bad luck of polling \((\delta)\)?—no

hint: phones were expensive :-)
Sampling Bias

If the data is sampled in a biased way, learning will produce a similarly biased outcome.

- technical explanation:
 data from $P_1(x, y)$ but test under $P_2 \neq P_1$: VC fails

- philosophical explanation:
 study Math hard but test English: no strong test guarantee

‘minor’ VC assumption:
 data and testing both iid from P
A True Personal Story

- Netflix competition for movie recommender system:
 \[10\% \text{ improvement} = 1\text{M US dollars}\]
- formed \(D_{\text{val}}\), in my \textbf{first shot}, \(E_{\text{val}}(g)\) showed \(13\%\) improvement
- why am I still teaching here? :-)

validation: \textit{random examples} within \(D\); test: ‘last’ user records ‘after’ \(D\)
Dealing with Sampling Bias

If the data is sampled in a biased way, learning will produce a similarly biased outcome.

- practical rule of thumb: **match test scenario as much as possible**
- e.g. if test: ‘last’ user records ‘after’ \mathcal{D}
 - training: emphasize later examples (KDDCup 2011)
 - validation: use ‘late’ user records

last puzzle:

danger when learning ‘credit card approval’ with existing bank records?
If the data \mathcal{D} is an unbiased sample from the underlying distribution P for binary classification, which of the following subset of \mathcal{D} is also an unbiased sample from P?

1. all the positive ($y_n > 0$) examples
2. half of the examples that are randomly and uniformly picked from \mathcal{D} without replacement
3. half of the examples with the smallest $\|x_n\|$ values
4. the largest subset that is linearly separable
If the data \mathcal{D} is an unbiased sample from the underlying distribution P for binary classification, which of the following subset of \mathcal{D} is also an unbiased sample from P?

1. all the positive ($y_n > 0$) examples
2. half of the examples that are randomly and uniformly picked from \mathcal{D} without replacement
3. half of the examples with the smallest $\|x_n\|$ values
4. the largest subset that is linearly separable

Reference Answer: 2

That’s how we form the validation set, remember? :-)

Hsuan-Tien Lin (NTU CSIE)
Machine Learning Foundations
Visual Data Snooping

Visualize $\mathcal{X} = \mathbb{R}^2$

- full Φ_2: $\mathbf{z} = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2)$, $d_{VC} = 6$
- or $\mathbf{z} = (1, x_1^2, x_2^2)$, $d_{VC} = 3$, after visualizing?
- or better $\mathbf{z} = (1, x_1^2 + x_2^2)$, $d_{VC} = 2$?
- or even better $\mathbf{z} = (\text{sign}(0.6 - x_1^2 - x_2^2))$?

—careful about your brain’s ‘model complexity’

for VC-safety, Φ shall be decided **without ‘snooping’ data**
Data Snooping by Mere Shifting-Scaling

If a data set has affected any step in the learning process, its ability to assess the outcome has been compromised.

- 8 years of currency trading data
- first 6 years for training, last two 2 years for testing
- $x =$ previous 20 days, $y =$ 21th day
- snooping versus no snooping: superior profit possible

- snooping: shift-scale all values by training + testing
- no snooping: shift-scale all values by training only
Data Snooping by Data Reusing

Research Scenario

benchmark data \mathcal{D}

- paper 1: propose \mathcal{H}_1 that works well on \mathcal{D}
- paper 2: find room for improvement, propose \mathcal{H}_2—and **publish only if better** than \mathcal{H}_1 on \mathcal{D}
- paper 3: find room for improvement, propose \mathcal{H}_3—and **publish only if better** than \mathcal{H}_2 on \mathcal{D}
- ...

- if all papers from the same author in **one big paper**: bad generalization due to $d_{vc}(\bigcup_m \mathcal{H}_m)$
- step-wise: later author **snooped** data by reading earlier papers, bad generalization worsen by **publish only if better**

if you torture the data long enough, it will confess :-)
Dealing with Data Snooping

- truth—very hard to avoid, unless being extremely honest
- extremely honest: lock your test data in safe
- less honest: reserve validation and use cautiously

- be blind: avoid making modeling decision by data
- be suspicious: interpret research results (including your own) by proper feeling of contamination

one secret to winning KDDCups:

careful balance between data-driven modeling (snooping) and validation (no-snooping)
Which of the following can result in unsatisfactory test performance in machine learning?

1. data snooping
2. overfitting
3. sampling bias
4. all of the above

Reference Answer: 4
Which of the following can result in unsatisfactory test performance in machine learning?

1. data snooping
2. overfitting
3. sampling bias
4. all of the above

Reference Answer: 4

A professional like you should be aware of those! :-)

Fun Time
Three Related Fields

Data Mining
- use (huge) data to find property that is interesting
- difficult to distinguish ML and DM in reality

Artificial Intelligence
- compute something that shows intelligent behavior
- ML is one possible route to realize AI

Statistics
- use data to make inference about an unknown process
- statistics contains many useful tools for ML

Power of Three
Three Theoretical Bounds

Hoeffding

\[P[\text{BAD}] \leq 2 \exp(-2\epsilon^2 N) \]
- **one** hypothesis
- useful for verifying/testing

Multi-Bin Hoeffding

\[P[\text{BAD}] \leq 2M \exp(-2\epsilon^2 N) \]
- **M** hypotheses
- useful for validation

VC

\[P[\text{BAD}] \leq 4m_{\mathcal{H}}(2N) \exp(\ldots) \]
- all \(\mathcal{H} \)
- useful for training
Three Linear Models

PLA/pocket

\[h(\mathbf{x}) = \text{sign}(s) \]

plausible error = 0/1
(small flipping noise)
minimize specially

linear regression

\[h(\mathbf{x}) = s \]

friendly error = squared
(easy to minimize)
minimize analytically

logistic regression

\[h(\mathbf{x}) = \theta(s) \]

plausible error = CE
(maximum likelihood)
minimize iteratively
Three Key Tools

Feature Transform

\[E_{\text{in}}(w) \rightarrow E_{\text{in}}(\tilde{w}) \]
\[d_{\text{VC}}(\mathcal{H}) \rightarrow d_{\text{VC}}(\mathcal{H}\Phi) \]

- by using more complicated \(\Phi \)
- lower \(E_{\text{in}} \)
- higher \(d_{\text{VC}} \)

Regularization

\[E_{\text{in}}(w) \rightarrow E_{\text{in}}(w_{\text{REG}}) \]
\[d_{\text{VC}}(\mathcal{H}) \rightarrow d_{\text{EFF}}(\mathcal{H}, A) \]

- by augmenting regularizer \(\Omega \)
- lower \(d_{\text{EFF}} \)
- higher \(E_{\text{in}} \)

Validation

\[E_{\text{in}}(h) \rightarrow E_{\text{val}}(h) \]
\[\mathcal{H} \rightarrow \{ g_1^-, \ldots, g_M^- \} \]

- by reserving \(K \) examples as \(\mathcal{D}_{\text{val}} \)
- fewer choices
- fewer examples
Three Learning Principles

Power of Three

- Occam's Razer: simple is good
- Sampling Bias: class matches exam
- Data Snooping: honesty is best policy
Three Learning Principles

Power of Three

Three Future Directions

More Transform

More Regularization

Less Label

- bagging
- decision tree
- aggregation
- AdaBoost
- dual
- uniform blending
- kernel LogReg
- large-margin
- GBDT
- PCA
- random forest
- soft-margin
- k-means
- OOB error

support vector machine
sparsity
autoencoder
deep learning
nearest neighbor
decision stump
prototype
quadratic programming
SVR

neural network
kernel
coordinate descent

matrix factorization
Gaussian kernel
probabilistic SVM

ready for the jungle!
Fun Time

What are the magic numbers that repeatedly appear in this class?

1. 3
2. 1126
3. both 3 and 1126
4. neither 3 nor 1126
Fun Time

What are the magic numbers that repeatedly appear in this class?

1. 3
2. 1126
3. both 3 and 1126
4. neither 3 nor 1126

Reference Answer: 3

3 as illustrated, and you may recall 1126 somewhere :-)

Hsuan-Tien Lin (NTU CSIE)
Summary

1. When Can Machines Learn?
2. Why Can Machines Learn?
3. How Can Machines Learn?
4. How Can Machines Learn Better?

Lecture 15: Validation

Lecture 16: Three Learning Principles
- Occam’s Razor: simple, simple, simple!
- Sampling Bias: match test scenario as much as possible
- Data Snooping: any use of data is ‘contamination’
- Power of Three: relatives, bounds, models, tools, principles

- next: ready for jungle!