Lecture 15: Validation

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)
Roadmap

1. When Can Machines Learn?
2. Why Can Machines Learn?
3. How Can Machines Learn?
4. How Can Machines Learn Better?

Lecture 14: Regularization

minimizes augmented error, where the added regularizer effectively limits model complexity

Lecture 15: Validation

- Model Selection Problem
- Validation
- Leave-One-Out Cross Validation
- V-Fold Cross Validation
Validation

Model Selection Problem

So Many Models Learned

Even Just for Binary Classification . . .

\[
\mathcal{A} \in \{ \text{PLA, pocket, linear regression, logistic regression} \} \\
T \in \{ 100, 1000, 10000 \} \\
\eta \in \{ 1, 0.01, 0.0001 \} \\
\Phi \in \{ \text{linear, quadratic, poly-10, Legendre-poly-10} \} \\
\Omega(\mathbf{w}) \in \{ \text{L2 regularizer, L1 regularizer, symmetry regularizer} \} \\
\lambda \in \{ 0, 0.01, 1 \}
\]

in addition to your favorite combination, may need to try other combinations to get a good \(g \)
Model Selection Problem

- given: M models $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_M$, each with corresponding algorithm A_1, A_2, \ldots, A_M
- goal: select \mathcal{H}_{m^*} such that $g_{m^*} = A_{m^*}(D)$ is of low $E_{out}(g_{m^*})$
- unknown E_{out} due to unknown $P(x) & P(y|x)$, as always :-)
- arguably the most important practical problem of ML

which one do you prefer? :-)

how to select? visually? —no, remember Lecture 12? :-)

Hsuan-Tien Lin (NTU CSIE)
Model Selection by Best E_{in}

select by best E_{in}?

$$m^* = \arg\min_{1 \leq m \leq M} (E_m = E_{\text{in}}(A_m(D)))$$

- Φ_{1126} always more preferred over Φ_1;
- $\lambda = 0$ always more preferred over $\lambda = 0.1$—overfitting?

- if A_1 minimizes E_{in} over \mathcal{H}_1 and A_2 minimizes E_{in} over \mathcal{H}_2,
 $\implies g_{m^*}$ achieves minimal E_{in} over $\mathcal{H}_1 \cup \mathcal{H}_2$
 \implies ‘model selection + learning’ pays $d_{\text{VC}}(\mathcal{H}_1 \cup \mathcal{H}_2)$—bad generalization?

selecting by E_{in} is dangerous
Model Selection by Best E_{test}

select by best E_{test}, which is evaluated on a fresh D_{test}?

$$m^* = \arg\min_{1 \leq m \leq M} (E_m = E_{\text{test}}(A_m(D)))$$

- generalization guarantee (finite-bin Hoeffding):

$$E_{\text{out}}(g_{m^*}) \leq E_{\text{test}}(g_{m^*}) + O\left(\sqrt{\frac{\log M}{N_{\text{test}}}}\right)$$

—yes! strong guarantee :-)

- but where is D_{test}?—your boss’s safe, maybe? :-(

selecting by E_{test} is infeasible and cheating
Validation

Model Selection Problem

Comparison between E_{in} and E_{test}

<table>
<thead>
<tr>
<th>in-sample error E_{in}</th>
<th>test error E_{test}</th>
</tr>
</thead>
<tbody>
<tr>
<td>• calculated from \mathcal{D}</td>
<td>• calculated from $\mathcal{D}_{\text{test}}$</td>
</tr>
<tr>
<td>• feasible on hand</td>
<td>• infeasible in boss’s safe</td>
</tr>
<tr>
<td>• ‘contaminated’ as \mathcal{D} also used by \mathcal{A}_m to ‘select’ g_m</td>
<td>• ‘clean’ as $\mathcal{D}_{\text{test}}$ never used for selection before</td>
</tr>
</tbody>
</table>

Something in between: E_{val}

• calculated from $\mathcal{D}_{\text{val}} \subset \mathcal{D}$
• feasible on hand
• ‘clean’ if \mathcal{D}_{val} never used by \mathcal{A}_m before

selecting by E_{val}: legal cheating :-)
For $\mathcal{X} = \mathbb{R}^d$, consider two hypothesis sets, \mathcal{H}_+ and \mathcal{H}_-. The first hypothesis set contains all perceptrons with $w_1 \geq 0$, and the second hypothesis set contains all perceptrons with $w_1 \leq 0$. Denote g_+ and g_- as the minimum-E_{in} hypothesis in each hypothesis set, respectively.

Which statement below is true?

1. If $E_{\text{in}}(g_+) < E_{\text{in}}(g_-)$, then g_+ is the minimum-E_{in} hypothesis of all perceptrons in \mathbb{R}^d.
2. If $E_{\text{test}}(g_+) < E_{\text{test}}(g_-)$, then g_+ is the minimum-E_{test} hypothesis of all perceptrons in \mathbb{R}^d.
3. The two hypothesis sets are disjoint.
4. None of the above
For $\mathcal{X} = \mathbb{R}^d$, consider two hypothesis sets, \mathcal{H}_+ and \mathcal{H}_-. The first hypothesis set contains all perceptrons with $w_1 \geq 0$, and the second hypothesis set contains all perceptrons with $w_1 \leq 0$. Denote g_+ and g_- as the minimum-E_{in} hypothesis in each hypothesis set, respectively. Which statement below is true?

1. If $E_{\text{in}}(g_+) < E_{\text{in}}(g_-)$, then g_+ is the minimum-E_{in} hypothesis of all perceptrons in \mathbb{R}^d.

2. If $E_{\text{test}}(g_+) < E_{\text{test}}(g_-)$, then g_+ is the minimum-E_{test} hypothesis of all perceptrons in \mathbb{R}^d.

3. The two hypothesis sets are disjoint.

4. None of the above

Reference Answer: 1

Note that the two hypothesis sets are not disjoint (sharing ‘$w_1 = 0$’ perceptrons) but their union is all perceptrons.
Validation Set \mathcal{D}_{val}

\[
\begin{align*}
E_{\text{in}}(h) & \uparrow \\
\mathcal{D} & \quad \rightarrow \\
\text{size } N & \quad \mathcal{D}_{\text{train}} \\
\downarrow & \\
g_m = \mathcal{A}_m(\mathcal{D}) & \quad g_m^- = \mathcal{A}_m(\mathcal{D}_{\text{train}}) \\
\end{align*}
\]

- $\mathcal{D}_{\text{val}} \subset \mathcal{D}$: called **validation set**—‘on-hand’ simulation of test set
- to connect E_{val} with E_{out}: $\mathcal{D}_{\text{val}} \overset{iid}{\sim} P(x, y) \iff$ select K examples from \mathcal{D} at random
- to make sure \mathcal{D}_{val} ‘clean’: feed only $\mathcal{D}_{\text{train}}$ to \mathcal{A}_m for model selection

\[
E_{\text{out}}(g_m^-) \leq E_{\text{val}}(g_m^-) + O\left(\sqrt{\frac{\log M}{K}}\right)
\]
Model Selection by Best E_{val}

$m^* = \text{argmin}_{1 \leq m \leq M} (E_m = E_{\text{val}}(A_m(D_{\text{train}})))$

- generalization guarantee for all m:
 \[E_{\text{out}}(g_m^-) \leq E_{\text{val}}(g_m^-) + O\left(\sqrt{\log \frac{M}{K}}\right) \]

- heuristic gain from $N - K$ to N:

\[
E_{\text{out}}\left(\begin{array}{c}
g_{m^*}^- \\
A_{m^*}(D)
\end{array}\right) \leq E_{\text{out}}\left(\begin{array}{c}
g_{m^*}^- \\
A_{m^*}(D_{\text{train}})
\end{array}\right)
\]

—learning curve, remember? :-)

\[
E_{\text{out}}(g_{m^*}) \leq E_{\text{out}}(g_{m^*}^-) \leq E_{\text{val}}(g_{m^*}^-) + O\left(\sqrt{\frac{\log M}{K}}\right)
\]
Validation in Practice

use validation to select between \mathcal{H}_{Φ_5} and $\mathcal{H}_{\Phi_{10}}$

- in-sample: selection with E_{in}
- optimal: cheating-selection with E_{test}
- sub-g: selection with E_{val} and report g_{m*}
- full-g: selection with E_{val} and report g_{m*}

Indeed

$$E_{out}(g_{m*}) \leq E_{out}(g_{m*})$$

why is sub-g worse than in-sample some time?
The Dilemma about K

reasoning of validation:

$$E_{\text{out}}(g) \approx E_{\text{out}}(g^-) \approx E_{\text{val}}(g^-)$$

(smaller K) \quad (larger K)

- Large K: every $E_{\text{val}} \approx E_{\text{out}}$, but all g_m^- much worse than g_m
- Small K: every $g_m^- \approx g_m$, but E_{val} far from E_{out}

practical rule of thumb: $K = \frac{N}{5}$
For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K = \frac{N}{5}$ on 25 such models with different parameters to get the final g_{m^*}?

1. $6N^2$
2. $17N^2$
3. $25N^2$
4. $26N^2$
For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running the whole validation procedure with $K = \frac{N}{5}$ on 25 such models with different parameters to get the final g_{m^*}?

1. $6N^2$
2. $17N^2$
3. $25N^2$
4. $26N^2$

Reference Answer: 2

To get all the g_m^-, we need $\frac{16}{25}N^2 \cdot 25$ seconds. Then to get g_{m^*}, we need another N^2 seconds. So in total we need $17N^2$ seconds.
Extreme Case: $K = 1$

Reasoning of validation:

$$E_{\text{out}}(g) \approx E_{\text{out}}(g^-) \approx E_{\text{val}}(g^-)$$

(Small K): (Large K)

- take $K = 1$? $\mathcal{D}_{\text{val}}^{(n)} = \{(x_n, y_n)\}$ and $E_{\text{val}}^{(n)}(g_n^-) = \text{err}(g_n^-(x_n), y_n) = e_n$
- make e_n closer to $E_{\text{out}}(g)$?—平均 over possible $E_{\text{val}}^{(n)}$

Leave-one-out cross validation estimate:

$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^-(x_n), y_n)$$

Hope:

$$E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) \approx E_{\text{out}}(g)$$
Illustration of Leave-One-Out

\[E_{\text{loocv}}(\text{linear}) = \frac{1}{3}(e_1 + e_2 + e_3) \]

\[E_{\text{loocv}}(\text{constant}) = \frac{1}{3}(e_1 + e_2 + e_3) \]

which one would you choose?

\[m^* = \arg\min_{1 \leq m \leq M} (E_m = E_{\text{loocv}}(H_m, A_m)) \]
Theoretical Guarantee of Leave-One-Out Estimate

\[E_{\text{loocv}}(H, A) \] says something about \(E_{\text{out}}(g) \)?

Yes, for average \(E_{\text{out}} \) on size-\((N - 1)\) data

\[
\mathcal{E}_D E_{\text{loocv}}(H, A) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_D e_n
\]

\[
= \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_D \mathcal{E}_{D_n(x_n, y_n)} \text{err}(g_n^-(x_n), y_n)
\]

\[
= \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}_D E_{\text{out}}(g_n^-)
\]

\[
= \frac{1}{N} \sum_{n=1}^{N} E_{\text{out}}(N - 1) = E_{\text{out}}(N - 1)
\]

Expected \(E_{\text{loocv}}(H, A) \) says something about expected \(E_{\text{out}}(g^-) \)—often called ‘almost unbiased estimate of \(E_{\text{out}}(g) \)’
Leave-One-Out in Practice

- Select by E_{in} & E_{loocv}
- E_{loocv} much better than E_{in}
Consider three examples \((x_1, y_1), (x_2, y_2), (x_3, y_3)\) with \(y_1 = 1\), \(y_2 = 5\), \(y_3 = 7\). If we use \(E_{\text{loocv}}\) to estimate the performance of a learning algorithm that predicts with the average \(y\) value of the data set—the optimal constant prediction with respect to the squared error. What is \(E_{\text{loocv}}\) (squared error) of the algorithm?

1. 0
2. \(\frac{56}{9}\)
3. \(\frac{60}{9}\)
4. 14
Consider three examples \((x_1, y_1), (x_2, y_2), (x_3, y_3)\) with \(y_1 = 1, y_2 = 5, y_3 = 7\). If we use \(E_{\text{loocv}}\) to estimate the performance of a learning algorithm that predicts with the average \(y\) value of the data set—the optimal constant prediction with respect to the squared error. What is \(E_{\text{loocv}}\) (squared error) of the algorithm?

- 0
- \(\frac{56}{9}\)
- \(\frac{60}{9}\)
- 14

Reference Answer: 4

This is based on a simple calculation of
\[e_1 = (1 - 6)^2, e_2 = (5 - 4)^2, e_3 = (7 - 3)^2.\]
Validation

V-Fold Cross Validation

Disadvantages of Leave-One-Out Estimate

Computation

\[
E_{\text{loocv}}(\mathcal{H}, \mathcal{A}) = \frac{1}{N} \sum_{n=1}^{N} e_n = \frac{1}{N} \sum_{n=1}^{N} \text{err}(g_n^-(x_n), y_n)
\]

- \(N\) ‘additional’ training per model, not always feasible in practice
- except ‘special case’ like analytic solution for linear regression

Stability—due to variance of single-point estimates

\[E_{\text{loocv}}: \text{not often used practically}\]
V-fold Cross Validation

how to **decrease computation need** for cross validation?

- essence of leave-one-out cross validation: partition \mathcal{D} to N parts, taking $N - 1$ for training and 1 for validation orderly

- **V-fold cross-validation**: random-partition of \mathcal{D} to V equal parts,

 \[
 \mathcal{D} = \{D_1, D_2, D_3, D_4, D_5, D_6, D_7, D_8, D_9, D_{10}\}
 \]

 take $V - 1$ for training and 1 for validation orderly

 \[
 E_{cv}(\mathcal{H}, \mathcal{A}) = \frac{1}{V} \sum_{v=1}^{V} E_{val}^{(v)}(g_v^-)
 \]

- selection by E_{cv}: $m^* = \arg\min_{1 \leq m \leq M} (E_m = E_{cv}(\mathcal{H}_m, \mathcal{A}_m))$

practical rule of thumb: $V = 10$
Final Words on Validation

‘Selecting’ Validation Tool

- **V-Fold** generally preferred over single validation if computation allows
- **5-Fold or 10-Fold** generally works well: not necessary to trade V-Fold with Leave-One-Out

Nature of Validation

- all training models: select among hypotheses
- all validation schemes: select among finalists
- all testing methods: just evaluate

validation still more optimistic than testing

do not fool yourself and others :-), report test result, not best validation result
For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final g_{m^*}?

1. $\frac{47}{2} N^2$
2. $47 N^2$
3. $\frac{407}{2} N^2$
4. $407 N^2$
For a learning model that takes N^2 seconds of training when using N examples, what is the total amount of seconds needed when running 10-fold cross validation on 25 such models with different parameters to get the final g_m^*?

1. $\frac{47}{2}N^2$
2. $47N^2$
3. $\frac{407}{2}N^2$
4. $407N^2$

Reference Answer: 3

To get all the E_{cv}, we need $\frac{81}{100}N^2 \cdot 10 \cdot 25$ seconds. Then to get g_m^*, we need another N^2 seconds. So in total we need $\frac{407}{2}N^2$ seconds.
Summary

1. When Can Machines Learn?
2. Why Can Machines Learn?
3. How Can Machines Learn?
4. How Can Machines Learn Better?

Lecture 14: Regularization

Lecture 15: Validation

- Model Selection Problem
dangerous by E_{in} and dishonest by E_{test}

- Validation
select with $E_{\text{val}}(A_m(D_{\text{train}}))$ while returning $A_{m^*}(D)$

- Leave-One-Out Cross Validation
huge computation for almost unbiased estimate

- V-Fold Cross Validation
reasonable computation and performance

• next: something ‘up my sleeve’