Lecture 11: Linear Models for Classification

Hsuan-Tien Lin (林軒田)
htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering
National Taiwan University
(國立台灣大學資訊工程系)
Roadmap

1. When Can Machines Learn?
2. Why Can Machines Learn?
3. How Can Machines Learn?
4. How Can Machines Learn Better?

Lecture 10: Logistic Regression
- **gradient descent** on **cross-entropy error**
 to get good **logistic hypothesis**

Lecture 11: Linear Models for Classification
- Linear Models for Binary Classification
- Stochastic Gradient Descent
- Multiclass via Logistic Regression
- Multiclass via Binary Classification

Hsuan-Tien Lin (NTU CSIE)
Linear Models Revisited

linear scoring function: $s = w^T x$

linear classification

$h(x) = \text{sign}(s)$

- plausible err = 0/1
- discrete $E_{\text{in}}(w)$: NP-hard to solve

linear regression

$h(x) = s$

- friendly err = squared
- quadratic convex $E_{\text{in}}(w)$: closed-form solution

logistic regression

$h(x) = \theta(s)$

- plausible err = cross-entropy
- smooth convex $E_{\text{in}}(w)$: gradient descent

can linear regression or logistic regression help linear classification?
Error Functions Revisited

linear scoring function: \(s = \mathbf{w}^T \mathbf{x} \)

for binary classification \(y \in \{-1, +1\} \)

linear classification

\[
\begin{align*}
 h(\mathbf{x}) &= \text{sign}(s) \\
 \text{err}(h, \mathbf{x}, y) &= \left[h(\mathbf{x}) \neq y \right] \\
 \text{err}_{0/1}(s, y) &= \left[\text{sign}(s) \neq y \right] \\
 &= \left[\text{sign}(ys) \neq 1 \right]
\end{align*}
\]

linear regression

\[
\begin{align*}
 h(\mathbf{x}) &= s \\
 \text{err}(h, \mathbf{x}, y) &= (h(\mathbf{x}) - y)^2 \\
 \text{err}_{\text{SQR}}(s, y) &= (s - y)^2 \\
 &= (ys - 1)^2
\end{align*}
\]

logistic regression

\[
\begin{align*}
 h(\mathbf{x}) &= \theta(s) \\
 \text{err}(h, \mathbf{x}, y) &= -\ln h(\mathbf{y} \mathbf{x}) \\
 \text{err}_{\text{CE}}(s, y) &= -\ln (1 + \exp(-ys))
\end{align*}
\]

\((ys):\) classification correctness score
Visualizing Error Functions

\[
\begin{align*}
0/1 \quad \text{err}_{0/1}(s, y) &= \mathbb{I}[\text{sign}(ys) \neq 1] \\
\text{sqr} \quad \text{err}_{\text{SQR}}(s, y) &= (ys - 1)^2 \\
\text{ce} \quad \text{err}_{\text{CE}}(s, y) &= \ln(1 + \exp(-ys)) \\
\text{scaled ce} \quad \text{err}_{\text{SCE}}(s, y) &= \log_2(1 + \exp(-ys))
\end{align*}
\]

- **0/1**: 1 iff \(ys \leq 0 \)
- **sqr**: large if \(ys \ll 1 \) \textbf{but} over-charge \(ys \gg 1 \)
 - small \(\text{err}_{\text{SQR}} \rightarrow \) small \(\text{err}_{0/1} \)
- **ce**: monotonic of \(ys \)
 - small \(\text{err}_{\text{CE}} \leftrightarrow \) small \(\text{err}_{0/1} \)
- **scaled ce**: a proper upper bound of \(0/1 \)
 - small \(\text{err}_{\text{SCE}} \leftrightarrow \) small \(\text{err}_{0/1} \)

upper bound:
useful for designing algorithmic error \(\hat{\text{err}} \)
Visualizing Error Functions

- **0/1**: $\text{err}_{0/1}(s, y) = \left[\text{sign}(ys) \neq 1\right]$
- **sqr**: $\text{err}_{\text{sqr}}(s, y) = (ys - 1)^2$
- **ce**: $\text{err}_{\text{ce}}(s, y) = \ln(1 + \exp(-ys))$
- **scaled ce**: $\text{err}_{\text{sce}}(s, y) = \log_2(1 + \exp(-ys))$

Graphical Illustration:
- **0/1**: 1 iff $ys \leq 0$
- **sqr**: large if $ys \ll 1$
 - **but** over-charge if $ys \gg 1$
 - small $\text{err}_{\text{sqr}} \rightarrow$ small $\text{err}_{0/1}$
- **ce**: monotonic of ys
 - small $\text{err}_{\text{ce}} \leftrightarrow$ small $\text{err}_{0/1}$
- **scaled ce**: a proper upper bound of 0/1
 - small $\text{err}_{\text{sce}} \leftrightarrow$ small $\text{err}_{0/1}$

Upper Bound: Useful for Designing Algorithmic Error $\hat{\text{err}}$
Linear Models for Classification

Linear Models for Binary Classification

Visualizing Error Functions

\[
\begin{align*}
0/1 \text{ err}_{0/1}(s, y) &= \lfloor \text{sign}(ys) \neq 1 \rfloor \\
sqr \text{ err}_{\text{sqr}}(s, y) &= (ys - 1)^2 \\
ce \text{ err}_{\text{ce}}(s, y) &= \ln(1 + \exp(-ys)) \\
scaled ce \text{ err}_{\text{sce}}(s, y) &= \log_2(1 + \exp(-ys))
\end{align*}
\]

- **0/1**: 1 iff \(ys \leq 0\)
- **sqr**: large if \(ys \ll 1\) but over-charge \(ys \gg 1\)
 - small \(\text{err}_{\text{sqr}}\) \(\rightarrow\) small \(\text{err}_{0/1}\)
- **ce**: monotonic of \(ys\)
 - small \(\text{err}_{\text{ce}}\) \(\leftrightarrow\) small \(\text{err}_{0/1}\)
- **scaled ce**: a proper upper bound of 0/1
 - small \(\text{err}_{\text{sce}}\) \(\leftrightarrow\) small \(\text{err}_{0/1}\)

upper bound:
useful for designing algorithmic error \(\hat{\text{err}}\)

Hsuan-Tien Lin (NTU CSIE)

Machine Learning Foundations
Visualizing Error Functions

\[
0/1 \quad \text{err}_{0/1}(s, y) = \left[\text{sign}(ys) \neq 1 \right]
\]
\[
sqr \quad \text{err}_{SQR}(s, y) = (ys - 1)^2
\]
\[
ce \quad \text{err}_{CE}(s, y) = \ln(1 + \exp(-ys))
\]
\[
scaled \ ce \quad \text{err}_{SCE}(s, y) = \log_2(1 + \exp(-ys))
\]

- **0/1**: 1 iff \(ys \leq 0 \)
- **sqr**: large if \(ys \ll 1 \)
 - **but** over-charge \(ys \gg 1 \)
 - small \(\text{err}_{SQR} \rightarrow \) small \(\text{err}_{0/1} \)
- **ce**: monotonic of \(ys \)
 - small \(\text{err}_{CE} \leftrightarrow \) small \(\text{err}_{0/1} \)
- **scaled ce**: a proper upper bound of \(0/1 \)
 - small \(\text{err}_{SCE} \leftrightarrow \) small \(\text{err}_{0/1} \)

upper bound:
useful for designing algorithmic error \(\hat{\text{err}} \)
Linear Models for Classification

Linear Models for Binary Classification

Theoretical Implication of Upper Bound

For any ys where $s = w^T x$

$$\text{err}_{0/1}(s, y) \leq \text{err}_{SCE}(s, y) = \frac{1}{\ln 2} \text{err}_{CE}(s, y).$$

$$\implies E^{0/1}_{in}(w) \leq E^{SCE}_{in}(w) = \frac{1}{\ln 2} E^{CE}_{in}(w)$$

$$E^{0/1}_{out}(w) \leq E^{SCE}_{out}(w) = \frac{1}{\ln 2} E^{CE}_{out}(w)$$

VC on $0/1$:

$$E^{0/1}_{out}(w) \leq E^{0/1}_{in}(w) + \Omega^{0/1}$$

$$\leq \frac{1}{\ln 2} E^{CE}_{in}(w) + \Omega^{0/1}$$

VC-Reg on CE:

$$E^{0/1}_{out}(w) \leq \frac{1}{\ln 2} E^{CE}_{out}(w)$$

$$\leq \frac{1}{\ln 2} E^{CE}_{in}(w) + \frac{1}{\ln 2} \Omega^{CE}$$

small $E^{CE}_{in}(w)$ \implies small $E^{0/1}_{out}(w)$:

logistic/linear reg. for linear classification
Regression for Classification

1. Run logistic/linear reg. on D with $y_n \in \{-1, +1\}$ to get w_{REG}
2. Return $g(x) = \text{sign}(w_{\text{REG}}^T x)$

PLA
- **Pros:** Efficient + strong guarantee if lin. separable
- **Cons:** Works only if lin. separable, otherwise needing pocket heuristic

Linear Regression
- **Pros:** ‘easiest’ optimization
- **Cons:** Loose bound of $\frac{\text{err}_0}{1}$ for large $|ys|$

Logistic Regression
- **Pros:** ‘easy’ optimization
- **Cons:** Loose bound of $\frac{\text{err}_0}{1}$ for very negative ys

- **Linear Regression** sometimes used to set w_0 for PLA/pocket/logistic regression
- **Logistic Regression** often preferred over pocket
Following the definition in the lecture, which of the following is not always $\geq \text{err}_{0/1}(y, s)$ when $y \in \{-1, +1\}$?

1. $\text{err}_{0/1}(y, s)$
2. $\text{err}_{SQR}(y, s)$
3. $\text{err}_{CE}(y, s)$
4. $\text{err}_{SCE}(y, s)$

Reference Answer: 3

Too simple, uh? :-) Anyway, note that $\text{err}_{0/1}$ is surely an upper bound of itself.
Two Iterative Optimization Schemes

For $t = 0, 1, \ldots$

$$w_{t+1} \leftarrow w_t + \eta v$$

when stop, return last w as g

PLA
pick (x_n, y_n) and decide w_{t+1} by the one example
$O(1)$ time per iteration ::-

logistic regression (pocket)
check D and decide w_{t+1} (or new \hat{w}) by all examples
$O(N)$ time per iteration ::-(

logistic regression with $O(1)$ time per iteration?
Logistic Regression Revisited

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}_t^T \mathbf{x}_n \right) (y_n \mathbf{x}_n)$$

- want: update direction $\mathbf{v} \approx -\nabla E_{in}(\mathbf{w}_t)$
 while computing \mathbf{v} by one single (\mathbf{x}_n, y_n)

- technique on removing $\frac{1}{N} \sum_{n=1}^{N}$:
 view as expectation E over uniform choice of n!

stochastic gradient:
$$\nabla_{\mathbf{w}} \text{err}(\mathbf{w}, \mathbf{x}_n, y_n) \ \text{with random} \ n$$
true gradient:
$$\nabla_{\mathbf{w}} E_{in}(\mathbf{w}) = E_{\text{random} n} \nabla_{\mathbf{w}} \text{err}(\mathbf{w}, \mathbf{x}_n, y_n)$$
Stochastic Gradient Descent (SGD)

stochastic gradient = true gradient + zero-mean ‘noise’ directions

Stochastic Gradient Descent

- idea: replace true gradient by stochastic gradient
- after enough steps, average true gradient ≈ average stochastic gradient
- pros: simple & cheaper computation :-) —useful for big data or online learning
- cons: less stable in nature

SGD logistic regression, looks familiar? :-):

\[
\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \theta \left(-y_n \mathbf{w}_t^T \mathbf{x}_n \right) \left(y_n \mathbf{x}_n \right) - \nabla \text{err}(\mathbf{w}_t, \mathbf{x}_n, y_n)
\]
PLA Revisited

SGD logistic regression:

\[\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \cdot \theta \left(-y_n \mathbf{w}_t^T \mathbf{x}_n\right) (y_n \mathbf{x}_n) \]

PLA:

\[\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + 1 \cdot \left[y_n \neq \text{sign}(\mathbf{w}_t^T \mathbf{x}_n)\right] (y_n \mathbf{x}_n) \]

- SGD logistic regression \(\approx \) ‘soft’ PLA
- PLA \(\approx \) SGD logistic regression with \(\eta = 1 \) when \(\mathbf{w}_t^T \mathbf{x}_n \) large

Two practical rule-of-thumb:

- Stopping condition? \(t \) large enough
- \(\eta \)? 0.1 when \(\mathbf{x} \) in proper range
Consider applying SGD on linear regression for big data. What is the update direction when using the negative stochastic gradient?

1. x_n
2. $y_n x_n$
3. $2(w_t^T x_n - y_n)x_n$
4. $2(y_n - w_t^T x_n)x_n$

Reference Answer: 4

Go check lecture 9 if you have forgotten about the gradient of squared error. :-)

Anyway, the update rule has a nice physical interpretation: improve w_t by ‘correcting’ proportional to the residual $(y_n - w_t^T x_n)$.
Multiclass Classification

- $\mathcal{Y} = \{\square, \diamond, \triangle, \star\}$
 (4-class classification)
- many applications in practice, especially for ‘recognition’

next: use **tools for** $\{\times, \circ\}$ classification to $\{\square, \diamond, \triangle, \star\}$ classification
One Class at a Time

□ or not? \{□ = \circ, \diamond = \times, \triangle = \times, \star = \times\}
One Class at a Time

◊ or not? \{□ = ×, ◊ = ◦, △ = ×, ⋆ = ×\}
One Class at a Time

△ or not? \(\square = \times, \diamond = \times, \triangle = \circ, \star = \times \)
One Class at a Time

or not? \{\square = \times, \diamond = \times, \triangle = \times, \star = \circ\}
Multiclass Prediction: Combine Binary Classifiers

but ties? :-}
One Class at a Time Softly

\[P(\square | \mathbf{x})? \{\square = \circ, \diamond = \times, \triangle = \times, \star = \times \} \]
One Class at a Time \textbf{Softly}

\[P(\diamond | \mathbf{x})? \{\square = \times, \diamond = \circ, \triangle = \times, \star = \times \} \]
One Class at a Time \textbf{Softly}

$P(\triangle | \mathbf{x})$? \{□ = ×, ◊ = ×, △ = ○, ⋆ = ×\}
One Class at a Time \textbf{Softly}

\begin{align*}
P(\star | \mathbf{x})? \quad \{\square = \times, \diamond = \times, \triangle = \times, \star = \circ\}
\end{align*}
Multiclass Prediction: Combine **Soft** Classifiers

\[g(x) = \arg\max_{k \in \mathcal{Y}} \theta (w_{[k]}^T x) \]
One-Versus-All (OVA) Decomposition

1. For $k \in \mathcal{Y}$, obtain $w[k]$ by running logistic regression on

 $$\mathcal{D}[k] = \{(x_n, y'_n = 2 [y_n = k] - 1)\}_{n=1}^{N}$$

2. Return $g(x) = \arg\max_{k \in \mathcal{Y}} (w^T[k] x)$

- **Pros**: efficient, can be coupled with any logistic regression-like approaches
- **Cons**: often unbalanced $\mathcal{D}[k]$ when K large
- **Extension**: multinomial (‘coupled’) logistic regression

OVA: a simple multiclass meta-algorithm to keep in your toolbox
Which of the following best describes the training effort of OVA decomposition based on logistic regression on some K-class classification data of size N?

1. Learn K logistic regression hypotheses, each from data of size N/K.
2. Learn K logistic regression hypotheses, each from data of size $N \ln K$.
3. Learn K logistic regression hypotheses, each from data of size N.
4. Learn K logistic regression hypotheses, each from data of size NK.

Reference Answer: 3

Note that the learning part can be easily done in parallel, while the data is essentially of the same size as the original data.
Source of **Unbalance**: One versus All

idea: make binary classification problems more **balanced** by one versus one
One versus One at a Time

□ or ♦? \{□ = ◦, ♦ = ×, △ = nil, ⋆ = nil\}
One versus One at a Time

□ or △? \{□ = o, ◊ = nil, △ = x, ⋆ = nil\}
One versus One at a Time

□ or ★?

\{□ = ⭕, ◊ = nil, △ = nil, ★ = ✗\}
One versus One at a Time

◊ or △? \{□ = nil, ◊ = ○, △ = ×, ⋆ = nil\}
One versus One at a Time

◊ or ⋆? \{□ = nil, ◊ = ○, △ = nil, ⋆ = ✗\}
One versus One at a Time

△ or ★?
\[
\{ \square = \text{nil}, \diamond = \text{nil}, \triangle = \bigcirc, \ast = \times \}
\]
Multiclass Prediction: Combine **Pairwise** Classifiers

$$g(x) = \text{tournament champion} \left\{ w_{[k,\ell]}^T x \right\}$$

(voting of classifiers)
One-versus-one (OVO) Decomposition

1. for \((k, \ell) \in \mathcal{Y} \times \mathcal{Y}\)
 obtain \(w_{[k,\ell]}\) by running linear binary classification on

 \[D_{[k,\ell]} = \{(x_n, y'_n = 2[y_n = k] - 1): y_n = k \text{ or } y_n = \ell\} \]

2. return \(g(x) = \text{tournament champion}\ \left\{ w_{[k,\ell]}^T x \right\} \)

• pros: efficient (‘smaller’ training problems), stable, can be coupled with any binary classification approaches

• cons: use \(O(K^2) w_{[k,\ell]}\)
 —more space, slower prediction, more training

OVO: another simple multiclass meta-algorithm to keep in your toolbox
Fun Time

Assume that some binary classification algorithm takes exactly N^3 CPU-seconds for data of size N. Also, for some 10-class multiclass classification problem, assume that there are $N/10$ examples for each class. Which of the following is total CPU-seconds needed for OVO decomposition based on the binary classification algorithm?

1. $\frac{9}{200}N^3$
2. $\frac{9}{25}N^3$
3. $\frac{4}{5}N^3$
4. N^3

Reference Answer: 2

There are 45 binary classifiers, each trained with data of size $(2N)/10$. Note that OVA decomposition with the same algorithm would take $10N^3$ time, much worse than OVO.
Summary

1. When Can Machines Learn?
2. Why Can Machines Learn?
3. How Can Machines Learn?

Lecture 10: Logistic Regression

Lecture 11: Linear Models for Classification

- Linear Models for Binary Classification
 three models useful in different ways
- Stochastic Gradient Descent
 follow negative stochastic gradient
- Multiclass via Logistic Regression
 predict with maximum estimated $P(k|x)$
- Multiclass via Binary Classification
 predict the tournament champion

- next: from linear to nonlinear

4. How Can Machines Learn Better?