
Machine Learning Techniques (NTU, Spring 2020) instructor: Hsuan-Tien Lin

Homework #2
RELEASE DATE: 04/24/2020

DUE DATE: 05/22/2020, BEFORE 13:00

QUESTIONS ABOUT HOMEWORK MATERIALS ARE
WELCOMED ON THE NTU COOL FORUM.

Please upload your solutions (without the source code) to Gradescope as instructed. For problems marked
with (*), please follow the guidelines on the course website and upload your source code to NTU COOL.
You are encouraged to (but not required to) include a README to help the TAs check your source code.
Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 160 points and 40 bonus points. In general, every home-
work set would come with a full credit of 160 points, with some possible bonus points.

Descent Methods for Probabilistic SVM

Recall that the probabilistic SVM is based on solving the following optimization problem:

min
A,B

F (A,B) =
1

N

N∑
n=1

ln
(

1 + exp
(
−yn

(
A ·
(
wT

svmφ(xn) + bsvm

)
+B

)))
.

1. When using the gradient descent for minimizing F (A,B), we need to compute the gradient first.

Let zn = wT
svmφ(xn) + bsvm, and pn = θ(−yn(Azn +B)), where θ(s) = exp(s)

1+exp(s) is the usual logistic

function. What is the gradient ∇F (A,B) in terms of only yn, pn, zn and N? Prove your answer.

2. When using the Newton method for minimizing F (A,B) (see Homework 3 of Machine Learning
Foundations), we need to compute −(H(F ))−1∇F in each iteration, where H(F ) is the Hessian
matrix of F at (A,B). Following the notations of the previous question, what is H(F ) in terms of
only yn, pn, zn and N? Prove your answer.

3. Following the previous queston, prove that the matrix H(F ) is positive semi-definite. The result
shows that the optimization problem is convex.

Neural Network

4. Consider Neural Network with sign(s) instead of tanh(s) as the transformation functions. That is,
consider Multi-Layer Perceptrons. In addition, we will take +1 to mean logic TRUE, and −1 to
mean logic FALSE. Assume that all xi below are either +1 or −1. Write down the weights wi for
the following perceptron

gA(x) = sign

(
d∑

i=0

wixi

)
.
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to implement
OR (x1, x2, . . . , xd) .

Explain your answer.

5. For a Neural Network with at least one hidden layer and tanh(s) as the transformation functions

on all neurons (including the output neuron), when all the initial weights w
(`)
ij are set to 0, what

gradient components are also 0? Justify your answer.

6. Consider a Neural Network with d(0) + 1 = 12 input units (the constant x
(0)
0 is counted here as a

unit), one output unit, and 48 hidden units (each x
(`)
0 is also counted as a unit). The hidden units

can be arranged in any number of layers ` = 1, · · · , L− 1. That is,∑
`=1,··· ,L−1

(
d(`) + 1

)
= 48.

Each layer is fully connected to the layer above it. What is the maximum possible number of
weights that such a network can have? Explain your answer.

Autoencoder

7. Assume an autoencoder with d̃ = 1. That is, the d × d̃ weight matrix W becomes a d × 1 weight
vector w, and the linear autoencoder tries to minimize

Ein(w) =
1

N

N∑
n=1

‖xn −wwTxn‖2.

We can solve this problem with stochastic gradient decent by defining

errn(w) = ‖xn −wwTxn‖2

and calculate ∇werrn(w). What is ∇werrn(w)? List your derivation steps.

8. Following Question 7, assume that noise vectors εn are generated i.i.d. from a zero-mean, unit
variance Gaussian distribution and added to xn to make x̃n = xn + εn, a noisy version of xn.
Then, the linear denoising autoencoder tries to minimize

Ein(w) =
1

N

N∑
n=1

‖xn −wwT (xn + εn)‖2.

For any fixed w, the expected Ein(w) is 1
N

∑N
n=1 ‖xn −wwTxn‖2 + Ω(w). What is Ω(w)? List

your derivation steps.

9. On page 11 of Lecture 213, we mentioned that it is sometimes useful to tie the encoding weights and
the decoding weights of the autoencoder to be the same. More formally, consider an autoencoder

without any x
(`)
0 . That is, the encoding weights are just w

(1)
ij and the decoding weights are w

(2)
ji

for i ∈ {1, 2, . . . , d} and j ∈ {1, 2, . . . , d̃}. Assume that uij = w
(1)
ij = w

(2)
ji . Write down the error

function E of a basic autoencoder (page 11 of Lecture 213) as a function of uij .

10. Following Question 9, consider the same error function E as a function of w instead of u as if we do

not tie the weights w by u. That is, we do not have the constraints w
(1)
ij = w

(2)
ji and it is possible

that the two are not equal. Let’s call the error function E10 to distinguish it from the previous
error function, now called E9. Prove that

∂E9(u)

∂uij
=
∂E10(w)

∂w
(1)
ij

+
∂E10(w)

∂w
(2)
ji

.
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Experiments with Autoencoder

Implement the basic autoencoder on page 11 of Lecture 213 and train it with gradient descent (i.e.
backpropogation with all data) using a learning rate of 0.1 and T = 5000. In addition, please initialize

each weight w
(`)
ij (including the bias) at the `-th layer with a uniform random number within [−U,U ],

where U =
√

6
1+d(`−1)+d(`) . Please use the normalized error function

errx(g) =
1

d

d∑
i=1

(gi(x)− xi)2

per example x instead of
d∑

i=1

(gi(x)− xi)2.

Please also remember to include x
(0)
0 and x

(1)
0 as shown on page 9 of Lecture 213.

11. (*) Run the algorithm without the constraint w
(1)
ij = w

(2)
ji on the last 256 columns of the fol-

lowing file for training:
http://amlbook.com/data/zip/zip.train

Plot Ein(g), which is the average errx of the training examples, as a function of log2 d̃ for log2 d̃ ∈
{1, 2, 3, 4, 5, 6, 7}. Describe your findings.

12. (*) Following Question 11, use the last 256 columns of the following file for testing:
http://amlbook.com/data/zip/zip.test

Plot Eout(g), which is the aveage errx of the test examples, as a function of log2 d̃ for log2 d̃ ∈
{1, 2, 3, 4, 5, 6, 7}. Describe your findings.

13. (*) Following Question 11, but run the algorithm with the constraint w
(1)
ij = w

(2)
ji and plot

Ein(g) as a function of log2 d̃ for log2 d̃ ∈ {1, 2, 3, 4, 5, 6, 7} and compare the plot with your result
in Question 11. Describe your findings.

14. (*) Following Question 13, and plot Eout(g) (on the test data defined in Question 12) as a function of
log2 d̃ for log2 d̃ ∈ {1, 2, 3, 4, 5, 6, 7} and compare the plot with your result in Question 12. Describe
your findings.

15. (*) Following Question 11, but the PCA algorithm on page 22 of Lecture 213 instead (please
remember to do the mean shifting in step 1 of the PCA algorithm). Define

g(x) = WWT (x− x̄) + x̄

as the ‘linear autoencoder’ that PCA learns. Plot Ein(g) as a function of log2 d̃ for log2 d̃ ∈
{1, 2, 3, 4, 5, 6, 7} and compare the plot with your result in Question 13. Describe your findings.

16. (*) Following Question 15, and plot Eout(g) (on the test data defined in Question 12) as a function of
log2 d̃ for log2 d̃ ∈ {1, 2, 3, 4, 5, 6, 7} and compare the plot with your result in Question 14. Describe
your findings.

Bonus: VC Dimension of Neural Networks

17. (Bonus 20%) Prove that for ∆ ≥ 2, if N ≥ 3∆ log2 ∆ , N∆ + 1 < 2N .

18. (Bonus 20%) Consider a hypothesis set H3A that consists of all d-3-1 neural networks with sign(·)
as all the transformation functions, and with (w0, w1, w2, w3) = (−2.5,+1,+1,+1) for the output
neuron only. Use the facts above (or not) to prove that the VC dimension of H3A is less than

3 ·
(
3(d+ 1) + 1

)
log2

(
3(d+ 1) + 1

)
.
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