Machine Learning Techniques (NTU, Spring 2020) instructor: Hsuan-Tien Lin

Homework #1
RELEASE DATE: 03/27/2020

DUE DATE: 04/24/2020, BEFORE 13:00

QUESTIONS ABOUT HOMEWORK MATERIALS ARE
WELCOMED ON THE NTU COOL FORUM.

Please upload your solutions (without the source code) to Gradescope as instructed. For problems marked
with (*), please follow the guidelines on the course website and upload your source code to NTU COOL.
You are encouraged to (but not required to) include a README to help the TAs check your source code.
Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 160 points and 40 bonus points. In general, every home-
work set would come with a full credit of 160 points, with some possible bonus points.

Transforms: Explicit versus Implicit

Consider the following training data set:
X1 :(170)7% =-1 X2:(071)ay2:*1 X3:(0371)7y3:71
x4 = (—1,0),ys = +1 x5 = (0,2),y5 = +1 xg = (0,—-2),y6 = +1
X7 = (_2a O)7y7 =+1

1. Use following nonlinear transformation of the input vector x = (x1,z2) to the transformed vec-

tor z = (¢1(x), $2(x)):
$1(x) = 3 — 221 — 2 Pa(x) = 2 — 229 — 1

What is the equation of the optimal separating “hyperplane” in the Z space? Explain your answer,
mathematically or pictorially.

2. Consider the same training data set as Question 1, but instead of explicitly transforming the input
space X to Z, apply the hard-margin support vector machine algorithm with the kernel function

K(x,x') = (1 +xTx)?%,

which corresponds to a second-order polynomial transformation. Set up the optimization problem
using (a1, - ,ar) and numerically solve for them (you can use any package you want). What is
the optimal a? Based on those a, which are the support vectors?

3. Following Question 2, what is the corresponding nonlinear curve in the X space? Please provide
calculation steps of your choice.

4. Compare the two nonlinear curves found in Questions 1 and 3, should they be the same? Why or
why not?
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Dual Problem of Soft-Margin Support Vector Machine with Per-
Example Margin Goals

In class, we taught the soft-margin support vector machine as follows.

N

1

(P1) ‘fvnzlaré §WTW + CZ &n
H n=1

s.t. Yn (WTXn + b) >1-¢&,
&, > 0.

In some extended SVM formulations, it is demanded to give a specific margin goal 0 < p, < 1 per
example. That is, we want to solve

N
1
(P) min - Sw'w+C ; &n
st yn (wan + b) > pn—&n

&n > 0.

5. Let v, be the Lagrange multipliers for the n-th constraint in (Pj). Following the derivation of the
dual SVM in class, write down (Pj) as an equivalent optimization problem

Juin max L((b,w,€),(c,3)).

What is £((b,w, &), (o, 3))?

6. Using (assuming) strong duality, the solution to (P]) would be the same as the Lagrange dual
problem

L((b,w,€),(cx, B)).

max min
an>0,8,>20  (b,w,£)

Use the KKT conditions to simplify the Lagrange dual problem, and obtain a dual problem that

involves only «,, (but not 3,).

7. Assume that (b, w’,) is the optimal solution of solving (P]) with all p,, = 0.5. Express the optimal
solution of (Py) (of a possibly different C' that you can freely choose to use) in terms of b, and w,.
Prove your answer.

Hint from the TAs to clarify the meaning: When solving (Py), we are simultaneously solving a
problem of (Py) (with different C'). Please find the different C' and represent the optimal solution
of the problem of (Py) (different C) with (b, w’,).

Hard-Margin versus Soft-Margin

8. Assume that the data set is separable in the Z space. That is, hard-margin SVM has an optimal
solution of some vector a*. Prove that if C' > maxj<,<ny ), the vector a* is also an optimal
solution to the soft-margin SVM.

Operation of Kernels

9. Let K1(x,x') = ¢,(x)T ¢ (x') be a valid kernel. Which of the followings are always valid kernels,
assuming that 0 < K;(x,x’) < 17

[a] K(x,x') = (1 - Ki(x,x))!
[b] K(x,x') = (1- K;(x,x'))°
[c] K(x,x')=(1-Ki(x,x))""

2 of 4



Machine Learning Techniques (NTU, Spring 2020) instructor: Hsuan-Tien Lin

[d] K(x,x')=(1-K;(x,x))"?
(4 proof of your choices)

10. For a given valid kernel K, consider a new kernel K (x,x') = pK(x,x’) for some p > 0. Prove or
disprove that for the dual of soft-margin support vector machine, using K along with a new C' = %

instead of K with the original C' leads to an equivalent gg, classifier.

Experiments with Soft-Margin Support Vector Machine

For Questions 11 to 16, we are going to experiment with a real-world data set. Download the processed
US Postal Service Zip Code data set with extracted features of intensity and symmetry for training and
testing:

http://www.amlbook.com/data/zip/features.train
http://www.amlbook.com/data/zip/features.test
The format of each row is
digit intensity symmetry

We will consider binary classification problems of the form “one of the digits” (as the positive class)
versus “other digits” (as the negative class).

The training set contains thousands of examples, and some quadratic programming packages cannot
handle this size. We recommend that you consider the LIBSVM package

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Regardless of the package that you choose to use, please read the manual of the package carefully to
make sure that you are indeed solving the soft-margin support vector machine taught in class like the
dual formulation below:

TR N
Hgl’l 3 Z Z U YnYm K (X, Xpm) — Z ay,
n=1

s.t. Z YnOp =0

In the following questions, please use the 0/1 error for evaluating Ei,, Eva and Eoyt (through the test
set). Some practical remarks include

(i) Please tell your chosen package to not automatically scale the data for you, lest you should change
the effective kernel and get different results.

(ii) It is your responsibility to check whether your chosen package solves the designated formulation
with enough numerical precision. Please read the manual of your chosen package for software
parameters whose values affect the outcome—any ML practitioner needs to deal with this kind of
added uncertainty.

11. (*) Consider the linear soft-margin SVM. That is, either solve the primal formulation of soft-margin
SVM with the given x,,, or take the linear kernel K (x,,x,,) = xem in the dual formulation. For
the binary classification problem of “0” versus “not 07, plot ||w|| versuslog;, C € {-5,-3,—1,1, 3}.

Describe your findings.

12. (*) Consider the polynomial kernel K (x,,%,) = (1 + x1x,,)?, where Q is the degree of the
polynomial. With @) = 2, and the binary classification problem of “8” versus “not 8”, plot Fj,
versus log;, C € {—5,—3,—1,1,3}. Describe your findings.
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13. (*) Following Question 12, plot number of support vectors versus log,, C € {-5,—3,—1,1,3}
instead. Describe your findings.

14. (*) Consider the Gaussian kernel K (x,,X,) = exp (—’nyn - meQ). With v = 80, and the binary
classification problem of “0” versus “not 0”. Consider values of log,, C' within {—3,—-2,—-1,0,1}.
Plot the the distance of any free support vector to the hyperplane in the (infinite-dimensional) Z
space versus log;, C. Describe your findings.

15. (*) Following Question 14, when fixing C' = 0.1, plot Eoy versus log;qy € {0,1,2,3,4}. Describe
your findings.

16. (*) Following Question 14 and consider a validation procedure that randomly samples 1000 ex-
amples from the training set for validation and leaves the other examples for training g, Fix
C = 0.1 and use the validation procedure to choose the best log,,v € {—1,0,1,2,3} according
to Eyar. If there is a tie of Ey,), choose the smallest v. Repeat the procedure 100 times. Plot a
histogram for the number of times each log;, "y is selected.

Bonus: Constant Feature for Support Vector Machine

17. (Bonus, 20 points) In the derivation of the Gaussian kernel, we see that the first feature component
in ®(x) is actually a constant 1; in the derivation of the polynomial kernel, we also see that the
first feature component is a constant. Prove or disprove that after solving the SVM, if we calculate
the optimal weight value w; that corresponds to the constant feature component z;, we would get
w; = 0.

Bonus: Dual of Dual
18. (Bonus, 20 points) Derive a simplified Lagrange dual problem of the hard-margin SVM dual. Is

your Lagrange dual problem of the hard-margin SVM dual the same as the hard-margin SVM
primal? Are they “similar” in any sense? Describe your findings.
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