
Machine Learning Techniques (NTU, Spring 2018) instructor: Hsuan-Tien Lin

Homework #3
RELEASE DATE: 05/31/2018

DUE DATE: 06/26/2018, BEFORE 14:00

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FACEBOOK
FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems.

For problems marked with (*), please follow the guidelines on the course website and upload your source
code to designated places. You are encouraged to (but not required to) include a README to help the
TAs check your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 160 points and 40 bonus points. In general, every home-
work set would come with a full credit of 160 points, with some possible bonus points.

Decision Tree

Impurity functions play an important role in decision tree branching. For binary classification problems,
let µ+ be the fraction of positive examples in a data subset, and µ− = 1−µ+ be the fraction of negative
examples in the data subset.

1. The Gini index is 1−µ2
+−µ2

−. What is the maximum value of the Gini index among all µ+ ∈ [0, 1]?
Prove your answer.

2. Following the previous question, there are four possible impurity functions below. We can normalize
each impurity function by dividing it with its maximum value among all µ+ ∈ [0, 1]. For instance,
the classification error is simply min(µ+, µ−) and its maximum value is 0.5. So the normalized
classification error is 2 min(µ+, µ−). After normalization, which of the following impurity function
is equivalent to the normalized Gini index? Prove your answer.

[a] the classification error min(µ+, µ−).

[b] the squared regression error (used for branching in classification data sets), which is by defi-
nition µ+(1− (µ+ − µ−))2 + µ−(−1− (µ+ − µ−))2.

[c] the entropy, which is −µ+ lnµ+ − µ− lnµ−, with 0 log 0 ≡ 0.

[d] the closeness, which is 1− |µ+ − µ−|.
[e] none of the other choices

Random Forest

3. If bootstrapping is used to sample N ′ = pN examples out of N examples and N is very large,
argue that approximately e−p ·N of the examples will not be sampled at all.
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4. Consider a Random Forest G that consists of K binary classification trees {gk}Kk=1, where K is an

odd integer. Each gk is of test 0/1 error Eout(gk) = ek. Prove or disprove that 2
K+1

∑K
k=1 ek upper

bounds Eout(G).

Gradient Boosting

5. For the gradient boosted decision tree, if a tree with only one constant node is returned as g1, and
if g1(x) = 2, then after the first iteration, all sn is updated from 0 to a new constant α1g1(xn).
What is sn in terms of all the {(xm, ym)}Nm=1? Prove your answer.

6. For the gradient boosted decision tree, after updating all sn in iteration t using the steepest η as
αt, what is the value of

∑N
n=1 sngt(xn)? Prove your answer.

7. If gradient boosting is coupled with linear regression (without regularization) instead of decision
trees. Prove or disprove that the optimal g2(x) = 0.

Neural Network

8. Consider Neural Network with sign(s) instead of tanh(s) as the transformation functions. That is,
consider Multi-Layer Perceptrons. In addition, we will take +1 to mean logic TRUE, and −1 to
mean logic FALSE. Assume that all xi below are either +1 or −1. Write down the weights wi for
the following perceptron

gA(x) = sign

(
d∑
i=0

wixi

)
.

to implement
OR (x1, x2, . . . , xd) .

Explain your answer.

9. For a Neural Network with at least one hidden layer and tanh(s) as the transformation functions

on all neurons (including the output neuron), when all the initial weights w
(`)
ij are set to 0, what

gradient components are also 0? Justify your answer.

10. Multiclass Neural Network of K classes is typically done by having K output neurons in the last

layer. For some given example (x, y), let s
(L)
k be the summed input score to the k-th neuron, the

joint “softmax” output vector is defined as

x(L) =

[
exp(s

(L)
1 )∑K

k=1 exp(s
(L)
k )

,
exp(s

(L)
2 )∑K

k=1 exp(s
(L)
k )

, . . . ,
exp(s

(L)
K )∑K

k=1 exp(s
(L)
k )

]
.

It is easy to see that each x
(L)
k is between 0 and 1 and the the components of the whole vector sum

to 1. That is, x(L) defines a probability distribution. Let’s rename x(L) = q for short.

Define a one-hot-encoded vector of y to be

v = [Jy = 1K , Jy = 2K , . . . , Jy = KK] .

The cross-entropy loss function for the Multiclass Neural Network, much like an extension of the
cross-entropy loss function used in logistic regression, is defined as

e = −
K∑
k=1

vk ln qk.

Prove that ∂e

∂s
(L)
k

= qk − vk which is actually the δ
(L)
k that you’d need for backprop.
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Experiments with AdaBoost

For Questions 11–16, implement the AdaBoost-Stump algorithm as introduced in Lecture 208. Run the
algorithm on the following set for training:

hw3_train.dat

and the following set for testing:
hw3_test.dat

Use a total of T = 300 iterations (please do not stop earlier than 300), and calculate Ein and Eout with
the 0/1 error.

For the decision stump algorithm, please implement the following steps. Any ties can be arbitrarily
broken.

(1) For any feature i, sort all the xn,i values to x[n],i such that x[n],i ≤ x[n+1],i.

(2) Consider thresholds within −∞ and all the midpoints
x[n],i+x[n+1],i

2 . Test those thresh-
olds with s ∈ {−1,+1} to determine the best (s, θ) combination that minimizes Euin
using feature i.

(3) Pick the best (s, i, θ) combination by enumerating over all possible i.

For those interested, step 2 can be carried out in O(N) time only!!

11. (*) Plot a figure for t versus Ein(gt). What is Ein(g1) and what is α1?

12. From the figure in the previous question, should Ein(gt) be decreasing or increasing? Write down
your observations and explanations.

13. (*) Plot a figure for t versus Ein(Gt), where Gt(x) = sign(
∑t
τ=1 ατgτ (x)). That is, G = GT . What

is Ein(G)?

14. (*) Plot a figure for t versus Ut, where Ut =
∑N
n=1 u

(t)
n . What is U2 and what is UT ?

15. (*) Plot a figure for t versus Eout(gt) estimated with the test set. What is Eout(g1)?

16. (*) Plot a figure for t versus Eout(Gt) estimated with the test set. What is Eout(G)?

Power of Adaptive Boosting

Next, we will prove that AdaBoost can reach Ein(GT ) = 0 if T is large enough and every hypothesis gt
satisfies εt ≤ ε < 1

2 . Let Ut be defined as in Question 14. It can be proved (see Lecture 11 of Machine
Learning Techniques) that

Ut+1 =
1

N

N∑
n=1

exp

(
−yn

t∑
τ=1

ατgτ (xn)

)
.

and Ein(GT ) ≤ UT+1.

17. (Bonus, 20 points) Prove that U1 = 1 and Ut+1 = Ut · 2
√
εt(1− εt) ≤ Ut · 2

√
ε(1− ε).

18. (Bonus, 20 points) Using the fact that
√
ε(1− ε) ≤ 1

2 exp
(
−2( 1

2 − ε)
2
)

for ε < 1
2 , argue that after

T = O(logN) iterations, Ein(GT ) = 0.
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