
Machine Learning Techniques (NTU, Spring 2018) instructor: Hsuan-Tien Lin

Homework #2
RELEASE DATE: 04/24/2018

DUE DATE: 05/29/2018, BEFORE 14:00

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FACEBOOK
FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems.

For problems marked with (*), please follow the guidelines on the course website and upload your source
code to designated places. You are encouraged to (but not required to) include a README to help the
TAs check your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 160 points and 40 bonus points. In general, every home-
work set would come with a full credit of 160 points, with some possible bonus points.

Descent Methods for Probabilistic SVM

Recall that the probabilistic SVM is based on solving the following optimization problem:

min
A,B

F (A,B) =
1

N

N∑
n=1

ln
(

1 + exp
(
−yn

(
A ·
(
wT

svmφ(xn) + bsvm

)
+B

)))
.

1. When using the gradient descent for minimizing F (A,B), we need to compute the gradient first.

Let zn = wT
svmφ(xn) + bsvm, and pn = θ(−yn(Azn +B)), where θ(s) = exp(s)

1+exp(s) is the usual logistic

function. What is the gradient ∇F (A,B) in terms of only yn, pn, zn and N? Prove your answer.

2. When using the Newton method for minimizing F (A,B) (see Homework 3 of Machine Learning
Foundations), we need to compute −(H(F ))−1∇F in each iteration, where H(F ) is the Hessian
matrix of F at (A,B). Following the notations of Problem 1, what is H(F ) in terms of only
yn, pn, zn and N? Prove your answer.

Kernel Ridge Regression

3. Assume that all xn are different. When using the Gaussian kernel with γ → ∞, what does the
kernel matrix K used in kernel ridge regression look like? What is the optimal β? Prove your
answer.

Blending

4. Consider T + 1 hypotheses g0, g1, · · · , gT . Let g0(x) = 0 for all x. Assume that your boss holds
a test set {(x̃m, ỹm)}Mm=1, where you know x̃m but ỹm is hidden. Nevertheless, you are allowed
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to know the squared test error Etest(gt) = 1
M

∑M
m=1(gt(x̃m) − ỹm)2 = et for t = 0, 1, 2, · · · , T .

Also, assume that 1
M

∑M
m=1(gt(x̃m))2 = st. In terms of all M , et, and st, how do you calculate∑M

m=1 gt(x̃m)ỹm? Prove your answer.

5. For the given T + 1 hypotheses in the previous problem, design an algorithm to solve

min
α0,α1,··· ,αT

Etest(

T∑
t=0

αtgt),

and obtain the optimal weights α0, · · · , αT . The algorithm the key to the test set blending technique
that the NTU team has used in KDDCup 2011.

6. Consider the case where the target function f : [0, 1] → R is given by f(x) = 2x − x2 and the
input probability distribution is uniform on [0, 1]. Assume that the training set has only two
examples generated independently from the input probability distribution and noiselessly by f ,
and the learning model is usual linear regression that minimizes the mean squared error within all
hypotheses of the form h(x) = w1x+w0. What is ḡ(x), the expected value of the hypothesis, that
the learning algorithm produces (see Page 10 of Lecture 207)? Prove your answer.

Boosting

7. Consider applying the AdaBoost algorithm on a binary classification data set where 87% of the
examples are positive. Because there are so many positive examples, the base algorithm within

AdaBoost returns a constant classifier g1(x) = +1 in the first iteration. Let u
(2)
+ be the individual

example weight of each positive example in the second iteration, and u
(2)
− be the individual example

weight of each negative example in the second iteration. What is u
(2)
+ /u

(2)
− ? Prove your answer.

Kernel for Decision Stumps

When talking about non-uniform voting in aggregation, we mentioned that α can be viewed as a weight
vector learned from any linear algorithm coupled with the following transform:

φ(x) =
(
g1(x), g2(x), · · · , gT (x)

)
.

When studying kernel methods, we mentioned that the kernel is simply a computational short-cut for
the inner product (φ(x))T (φ(x′)). In this problem, we mix the two topics together using the decision
stumps as our gt(x).

8. Assume that the input vectors contain only integers between (including) 0 and M .

gs,i,θ(x) = s · sign
(
xi − θ

)
,

where i ∈ {1, 2, · · · , d}, d is the finite dimensionality of the input space,

s ∈ {−1,+1}, θ ∈ R, and sign(0) = +1

Two decision stumps g and ĝ are defined as the same if g(x) = ĝ(x) for every x ∈ X . Two decision
stumps are different if they are not the same. How many different decision stumps are there for
the case of d = 2 and M = 5? Explain your answer.

9. Continuing from the previous problem, let G = { all different decision stumps for X } and enumerate
each hypothesis g ∈ G by some index t. Define

φds(x) =

(
g1(x), g2(x), · · · , gt(x), · · · , g|G|(x)

)
.

For any given (d,M), derive a simple equation that evaluates Kds(x,x
′) = (φds(x))T (φds(x

′))
efficiently and prove your answer.
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10. Assume that those integers between 0 and M represents counts in histograms. A famous kernel
called histogram intersection kernel is of the form

Khi(x,x
′) =

d∑
i=1

min(xi, x
′
i).

Consider some special decision stumps ht(x) = gt(x)+1
2 , where gt’s are defined in the previous

question. That is, ht(x) outputs (0, 1)-bits instead of ±1. Argue that for some q1, q2, . . . , qt, . . .,
where each qt ∈ {0, 1}

φhi(x) =

(
q1h1(x), q2h2(x), · · · , qtht(x), · · · , q|G|h|G|(x)

)
.

Derive qt’s and prove your answer. Hint: the binary qt’s physically mean selecting some ht to the
transform. So the problem actually asks you to prove that some of those ht’s can be used to form
a transform that leads to the histogram intersection kernel.

Experiment with Kernel Ridge Regression. Write a program to implement the kernel ridge re-
gression algorithm from Lecture 206, and use it for classification (i.e. implement LSSVM). Consider the
following data set

hw2_lssvm_all.dat

Use the first 400 examples for training and the remaining for testing. Calculate Ein and Eout with the
0/1 error. Consider the Gaussian-RBF kernel exp

(
−γ‖x− x′‖2

)
. Try all combinations of parameters

γ ∈ {32, 2, 0.125} and λ ∈ {0.001, 1, 1000}.

11. (*) Among all parameter combinations, which combination results in the minimum Ein(g)? What
is the corresponding Ein(g)?

12. (*) Among all parameter combinations, which combination results in the minimum Eout(g)? What
is the corresponding Eout(g)?

.
Experiment with Bagging Ridge Regression.

First, write a program to implement linear LSSVM (i.e. linear ridge regression for classification). You
can reuse the code in the previous problem if you want. Again consider the following data set

hw2_lssvm_all.dat

Please do add x0 = 1 to your data. Use the first 400 examples for training to get g and the remaining
for testing. Calculate Ein and Eout with the 0/1 error. Consider λ ∈ {0.01, 0.1, 1, 10, 100}.

13. (*) Among all λ, which λ results in the minimum Ein(g)? What is the corresponding Ein(g)?

14. (*) Among all λ, which λ results in the minimum Eout(g)? What is the corresponding Eout(g)?

Next, write a program to implement bagging on top of linear LSSVM. Again consider the following data
set

hw2_lssvm_all.dat

Please do add x0 = 1 to your data. Use the first 400 examples for training and the remaining for testing.
Calculate Ein and Eout with the 0/1 error. Note that each linear LSSVM should take the sign operation
before uniform aggregation (with voting). Consider λ ∈ {0.01, 0.1, 1, 10, 100}. Use 400 bootstrapped
examples in bagging and take 250 iterations of bagging (e.g. 250 gt’s) to get G.

15. (*) Among all λ, which λ results in the minimum Ein(G)? What is the corresponding Ein(G)?
Compare your results with the one in Problem 13 and describe your findings.

16. (*) Among all λ, which λ results in the minimum Eout(G)? What is the corresponding Eout(G)?
Compare your results with the one in Problem 14 and describe your findings.
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Bonus: Equivalent “Kernels” for Soft-Margin SVM

17. (Bonus 20%) Argue that for soft-margin SVM with some given data set, solving the dual problem
with a valid kernel K1(x,x′) or another function K2(x,x′) = K1(x,x′) + κ for any constant κ ∈ R
yields exactly the same optimal solution α and exactly the same optimal gsvm. Note that K2 may
not need to be a valid kernel. For instance, if K1 is the Gaussian kernel and κ = −1126, then K2

won’t be a valid kernel.

(instructor’s words: The results could help you simplify your kernel derived in Problem 9.)

18. (Bonus 20%) Argue that for soft-margin SVM with some given data set, solving the dual problem
with a valid kernel K1(x,x′) or K3(x,x′) = K1(x,x′)+r(x)+r(x′) for any function r yields exactly
the same optimal solution α and exactly the same optimal gsvm.

(instructor’s words: The previous problem is a special case of this problem with r(x) = r(x′) = κ
2 .

Also, consider the kernel in Problem 9 as K1 and the kernel in Problem 10 as K3. Now you might
be able to see their connections even more easily (up to a constant scale, which can be addressed by
Problem 10 of Homework 1))
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