
Machine Learning Techniques (NTU, Spring 2017) instructor: Hsuan-Tien Lin

Homework #2
RELEASE DATE: 04/18/2017

DUE DATE: 05/09/2017, BEFORE 14:00

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FACEBOOK
FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems.

For problems marked with (*), please follow the guidelines on the course website and upload your source
code to designated places. You are encouraged to (but not required to) include a README to help the
TAs check your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 160 points and 40 bonus points. In general, every home-
work set would come with a full credit of 160 points, with some possible bonus points.

Descent Methods for Probabilistic SVM

Recall that the probabilistic SVM is based on solving the following optimization problem:

min
A,B

F (A,B) =
1

N

N∑
n=1

ln
(

1 + exp
(
−yn

(
A ·
(
wT

svmφ(xn) + bsvm

)
+B

)))
.

1. When using the gradient descent for minimizing F (A,B), we need to compute the gradient first.

Let zn = wT
svmφ(xn) + bsvm, and pn = θ(−yn(Azn +B)), where θ(s) = exp(s)

1+exp(s) is the usual logistic

function. What is the gradient ∇F (A,B) in terms of only yn, pn, zn and N? Prove your answer.

2. When using the Newton method for minimizing F (A,B) (see Homework 3 of Machine Learning
Foundations), we need to compute −(H(F ))−1∇F in each iteration, where H(F ) is the Hessian
matrix of F at (A,B). Following the notations of Question 1, what is H(F ) in terms of only
yn, pn, zn and N? Prove your answer.

Kernel Ridge Regression

3. Assume that all xn are different. When using the Gaussian kernel with γ → ∞, what does the
kernel matrix K used in kernel ridge regression look like? What is the optimal β? Prove your
answer.

4. When using the Gaussian kernel with γ → 0, what does the kernel matrix K used in kernel ridge
regression look like? What is the optimal β? Prove your answer.
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Support Vector Regression

The usual support vector regression model solves the following optimization problem.

(P1) min
b,w,ξ∨,ξ∧

1

2
wTw + C

N∑
n=1

(ξ∨n + ξ∧n )

s.t. −ε− ξ∨n ≤ yn −wTφ(xn)− b ≤ ε+ ξ∧n

ξ∨n ≥ 0, ξ∧n ≥ 0.

Usual support vector regression penalizes the violations ξ∨n and ξ∧n linearly. Another popular formulation,
called `2 loss support vector regression in (P2), penalizes the violations quadratically, just like the `2 loss
SVM introduced in Homework 1 of Machine Learning Techniques.

(P2) min
b,w,ξ∨,ξ∧

1

2
wTw + C

N∑
n=1

(
(ξ∨n )

2
+ (ξ∧n )

2
)

s.t. −ε− ξ∨n ≤ yn −wTφ(xn)− b ≤ ε+ ξ∧n .

5. Write down an equivalent ‘unconstrained’ form of (P2) that is similar to page 10 of the “Support
Vector Regression” lecture and prove the equivalence.

6. By a slight modification of the representer theorem presented in the class, the optimal w∗ for (P2)

must satisfy w∗ =
∑N
n=1 βnzn. We can substitute the form of the optimal w∗ into the answer in

Question 4 to derive an optimization problem that contains β (and b) only, which would look like

min
b,β

F (b,β) =
1

2

N∑
m=1

N∑
n=1

βnβmK(xn,xm) + something ,

where K(xn,xm) = (φ(xn))T (φ(xm)) is the kernel function. One thing that you should see is
that F (b,β) is differentiable to βn (and b) and hence you can use gradient descent to solve for the

optimal β. For any β, let sn =
∑N
m=1 βmK(xn,xm) + b. What is ∂F (b,β)

∂βm
? Prove your answer.

Blending

7. Consider the case where the target function f : [0, 1] → R is given by f(x) = x2 and the input
probability distribution is uniform on [0, 1]. Assume that the training set has only two examples
generated independently from the input probability distribution and noiselessly by f , and the learn-
ing model is usual linear regression that minimizes the mean squared error within all hypotheses
of the form h(x) = w1x+w0. What is ḡ(x), the expected value of the hypothesis, that the learning
algorithm produces (see Page 10 of Lecture 207)? Prove your answer.

Test Set Linear Regression.

The root-mean-square-error (RMSE) of a hypothesis h on a test set {(x̃n, ỹn)}Ñn=1 (x̃ ∈ Rd, ỹ ∈ R) is
defined as

RMSE(h) =

√√√√ 1

Ñ

Ñ∑
n=1

(ỹn − h(x̃n))2

In the next questions, please consider a case of knowing all the x̃n, none of the ỹn, but allowed to query
RMSE(h) for T (different) h.

8. How many queries is needed for constructing some hypothesis g with RMSE(g) = 0? In other
words, what is the minimum number of queries needed for “cheating” from the RMSEs to obtain
g(x̃n) = ỹn for every n = 1, 2, · · · , Ñ? Please illustrate your answer.
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9. The algorithm above is slow (and thus “impractical”) if Ñ is too large. Let us start designing a
smarter way of “cheating.” For any given hypothesis g, let

g = (g(x̃1), g(x̃2), · · · , g(x̃Ñ ))

ỹ = (ỹ1, ỹ2, · · · , ỹÑ ).

Note that you can compute g but you do not know ỹ. What is the minimum number of queries
needed for computing gT ỹ? Please illustrate your answer.

10. For any given set of hypotheses {g1, g2, · · · , gK}, use the result in the previous question to design
an algorithm to solve

min
α1,α2,··· ,αK

RMSE

(
K∑
k=1

αkgk

)
,

and obtain the optimal weights α1, · · · , αK . What is the minimum number of queries needed?
Please illustrate your answer.

Experiment with Kernel Ridge Regression. Write a program to implement the kernel ridge re-
gression algorithm from Lecture 206, and use it for classification (i.e. implement LSSVM). Consider the
following data set

hw2_lssvm_all.dat

Use the first 400 examples for training and the remaining for testing. Calculate Ein and Eout with the
0/1 error. Consider the Gaussian-RBF kernel exp

(
−γ‖x− x′‖2

)
. Try all combinations of parameters

γ ∈ {32, 2, 0.125} and λ ∈ {0.001, 1, 1000}.

11. (*) Among all parameter combinations, which combination results in the minimum Ein(g)? What
is the corresponding Ein(g)?

12. (*) Among all parameter combinations, which combination results in the minimum Eout(g)? What
is the corresponding Eout(g)?

.

Experiment with Support Vector Regression.

Write a program to implement the nonlinear SVR from Lecture 205, and use the SVR for classification.
Consider the following data set

hw2_lssvm_all.dat

Use the first 400 examples for training and the remaining for testing. Calculate Ein and Eout with the 0/1
error. Consider the Gaussian-RBF kernel exp

(
−γ‖x− x′‖2

)
. With a fixed ε = 0.5, try all combinations

of parameters γ ∈ {32, 2, 0.125} and C ∈ {0.001, 1, 1000} (The original problem uses λ instead of C. It
is okay if you have taken C = N/λ to solve the problem, but please mark so carefully to facilitate the
TAs in grading.) . (Note: For this problem, you CAN use any package you want. A recommended choice
is LIBSVM developed by Prof. Chih-Jen Lin in our department)

13. (*) Among all parameter combinations, which combination results in the minimum Ein(g)? What
is the corresponding Ein(g)?

14. (*) Among all parameter combinations, which combination results in the minimum Eout(g)? What
is the corresponding Eout(g)?

.
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Experiment with Bagging Ridge Regression.

Write a program to implement bagging on top of linear LSSVM (i.e. kernel ridge regression for classifi-
cation). You can reuse the code in the previous problem. Again consider the following data set

hw2_lssvm_all.dat

Use the first 400 examples for training and the remaining for testing. Calculate Ein and Eout with the
0/1 error. Note that each linear LSSVM should take the sign operation before uniform aggregation (with
voting). Consider λ ∈ {0.01, 0.1, 1, 10, 100}. Take at least 200 iterations for bagging. It is suggested to
add x0 = 1 to your data, but not a must. You can just illustrate what you have done clearly.

15. (*) Among all parameter combinations, which combination results in the minimum Ein(g)? What
is the corresponding Ein(g)?

16. (*) Among all parameter combinations, which combination results in the minimum Eout(g)? What
is the corresponding Eout(g)?

Bonus: Linear Blending with SVM Solver

Consider blending T hypothesis g1, g2, . . ., gT linearly with coefficients α1, α2, . . ., αT using the hinge
error function. That is, we want to solve

min
αt≥0

1

N

N∑
n=1

max

(
1− yn

T∑
t=1

αtgt(xn), 0

)

For your information, one of the solvers in the LIBLINEAR package from Prof. Chih-Jen Lin’s group
solves the following SVM problem, which is slightly different from the problem introduced in class. In
particular, there is no variable b in the formulation.

min
w

1

2
wTw + C

N∑
n=1

ξn

subject to yn(wTxn) ≥ 1− ξn and ξn ≥ 0 for n = 1, 2, . . . N.

17. (Bonus, 20 points) Describe a procedure to solve the linear blending problem above without the
αt ≥ 0 constraints using only the LIBLINEAR solver above.

18. (Bonus, 20 points) The constraints αt ≥ 0 denote the non-negative vote of each gt. If you are so
confident of your gt such that you think every hypothesis should deserve at least one vote, you
can make the constraints even more strict with αt ≥ 1. Describe a procedure to solve the linear
blending problem above with the αt ≥ 1 constraints using only the LIBLINEAR solver above.
(Hint: Can we use Ñ instead of N examples? )

Note: In the two questions above, you can reasonably consider setting the parameter C properly to
approximate the problem that you want to solve.
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