
Machine Learning Techniques (NTU, Spring 2017) instructor: Hsuan-Tien Lin

Homework #1
RELEASE DATE: 03/21/2017

DUE DATE: 04/11/2017, BEFORE 14:00

QUESTIONS ABOUT HOMEWORK MATERIALS ARE WELCOMED ON THE FACEBOOK
FORUM.

Unless granted by the instructor in advance, you must turn in a printed/written copy of your solutions
(without the source code) for all problems.

For problems marked with (*), please follow the guidelines on the course website and upload your source
code to designated places. You are encouraged to (but not required to) include a README to help the
TAs check your source code. Any programming language/platform is allowed.

Any form of cheating, lying, or plagiarism will not be tolerated. Students can get zero scores and/or fail
the class and/or be kicked out of school and/or receive other punishments for those kinds of misconducts.

Discussions on course materials and homework solutions are encouraged. But you should write the final
solutions alone and understand them fully. Books, notes, and Internet resources can be consulted, but
not copied from.

Since everyone needs to write the final solutions alone, there is absolutely no need to lend your homework
solutions and/or source codes to your classmates at any time. In order to maximize the level of fairness
in this class, lending and borrowing homework solutions are both regarded as dishonest behaviors and will
be punished according to the honesty policy.

You should write your solutions in English or Chinese with the common math notations introduced in
class or in the problems. We do not accept solutions written in any other languages.

This homework set comes with 160 points and 40 bonus points. In general, every home-
work set would come with a full credit of 160 points, with some possible bonus points.

Transforms: Explicit versus Implicit

Consider the following training data set:

x1 = (1, 0), y1 = −1 x2 = (0, 1), y2 = −1 x3 = (0,−1), y3 = −1

x4 = (−1, 0), y4 = +1 x5 = (0, 2), y5 = +1 x6 = (0,−2), y6 = +1

x7 = (−2, 0), y7 = +1

1. Use following nonlinear transformation of the input vector x = (x1, x2) to the transformed vec-
tor z = (φ1(x), φ2(x)):

φ1(x) = 2x22 − 4x1 + 1 φ2(x) = x21 − 2x2 − 3

What is the equation of the optimal separating “hyperplane” in the Z space? Explain your answer,
mathematically or pictorially.

2. Consider the same training data set as Question 1, but instead of explicitly transforming the input
space X to Z, apply the hard-margin support vector machine algorithm with the kernel function

K(x,x′) = (2 + xTx′)2,

which corresponds to a second-order polynomial transformation. Set up the optimization problem
using (α1, · · · , α7) and numerically solve for them (you can use any package you want). What is
the optimal α? Based on those α, which are the support vectors?

3. Following Question 2, what is the corresponding nonlinear curve in the X space? Please provide
calculation steps of your choice.

4. Compare the two nonlinear curves found in Questions 1 and 3, should they be the same? Why or
why not?
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Dual Problem of L2-Error Soft-Margin Support Vector Machines

In class, we taught the soft-margin support vector machine as follows.

(P1) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξn

s.t. yn

(
wTxn + b

)
≥ 1− ξn

ξn ≥ 0.

The support vector machine penalizes the margin violation linearly. Another popular formulation
penalizes the margin violation quadratically. In this problem, we derive the dual of such a formulation.
The formulation is as follows.

(P ′2) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξ2n

s.t. yn

(
wTxn + b

)
≥ 1− ξn, for n = 1, 2, · · · , N ;

ξn ≥ 0, for n = 1, 2, · · · , N.

5. Argue that the constraints ξn ≥ 0 are not necessary for the new formulation. In other words, the
formulation (P ′2) is equivalent to the following optimization problem.

(P2) min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξ2n

s.t. yn

(
wTxn + b

)
≥ 1− ξn, for n = 1, 2, · · · , N.

6. Let αn be the Lagrange multipliers for the n-th constraint in (P2). Following the derivation of the
dual SVM in class, write down (P2) as an equivalent optimization problem

min
(b,w,ξ)

max
αn≥0

L((b,w, ξ),α).

What is L((b,w, ξ),α)?

7. Using (assuming) strong duality, the solution to (P2) would be the same as the Lagrange dual
problem

max
αn≥0

min
(b,w,ξ)

L((b,w, ξ),α).

Use the KKT conditions to simplify the Lagrange dual problem, and obtain a dual problem that
involves only αn.

8. Explain what would happen when we use zn = φ(xn) instead of xn, and write down the optimiza-
tion problem that uses K(xn,xm) to replace φ(xn)Tφ(xm)—that is, the kernel trick.

Operation of Kernels

9. Let K1(x,x′) = φ1(x)Tφ1(x′) be a valid kernel. Which of the followings are always valid kernels,
assuming that 0 < K1(x,x′) < 1?

[a] K(x,x′) = (1−K1(x,x′))1

[b] K(x,x′) = (1−K1(x,x′))0

[c] K(x,x′) = (1−K1(x,x′))−1

[d] K(x,x′) = (1−K1(x,x′))−2

(+ proof of your choices)

10. For a given valid kernel K, consider a new kernel K̃(x,x′) = pK(x,x′) + q for some p > 0 and
q ≥ 0. Prove or disprove that for the dual of soft-margin support vector machine, using K̃ along
with a new C̃ = C

p instead of K with the original C leads to an equivalent gsvm classifier.

2 of 4



Machine Learning Techniques (NTU, Spring 2017) instructor: Hsuan-Tien Lin

Experiments with Soft-Margin Support Vector Machine

For Questions 11 to 16, we are going to experiment with a real-world data set. Download the processed
US Postal Service Zip Code data set with extracted features of intensity and symmetry for training and
testing:

http://www.amlbook.com/data/zip/features.train

http://www.amlbook.com/data/zip/features.test

The format of each row is

digit intensity symmetry

We will consider binary classification problems of the form “one of the digits” (as the positive class)
versus “other digits” (as the negative class).

The training set contains thousands of examples, and some quadratic programming packages cannot
handle this size. We recommend that you consider the LIBSVM package

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Regardless of the package that you choose to use, please read the manual of the package carefully to
make sure that you are indeed solving the soft-margin support vector machine taught in class like the
dual formulation below:

min
α

1

2

N∑
n=1

N∑
m=1

αnαmynymK(xn,xm)−
N∑
n=1

αn

s.t.

N∑
n=1

ynαn = 0

0 ≤ αn ≤ C n = 1, · · · , N

In the following questions, please use the 0/1 error for evaluating Ein, Eval and Eout (through the test
set). Some practical remarks include

(i) Please tell your chosen package to not automatically scale the data for you, lest you should change
the effective kernel and get different results.

(ii) It is your responsibility to check whether your chosen package solves the designated formulation
with enough numerical precision. Please read the manual of your chosen package for software
parameters whose values affect the outcome—any ML practitioner needs to deal with this kind of
added uncertainty.

11. (*) Consider the linear soft-margin SVM. That is, either solve the primal formulation of soft-margin
SVM with the given xn, or take the linear kernel K(xn,xm) = xT

nxm in the dual formulation. For
the binary classification problem of “0” versus “not 0”, plot ‖w‖ versus log10 C ∈ {−5,−3,−1, 1, 3}.
Describe your findings.

12. (*) Consider the polynomial kernel K(xn,xm) = (1 + xT
nxm)Q, where Q is the degree of the

polynomial. With Q = 2, and the binary classification problem of “8” versus “not 8”, plot Ein

versus log10 C ∈ {−5,−3,−1, 1, 3}. Describe your findings.

13. (*) Following Question 12, plot number of support vectors versus log10 C ∈ {−5,−3,−1, 1, 3}
instead. Describe your findings.

14. (*) Consider the Gaussian kernel K(xn,xm) = exp
(
−γ||xn − xm||2

)
. With γ = 80, and the binary

classification problem of “0” versus “not 0”. Consider values of log10 C within {−3,−2,−1, 0, 1}.
Plot the the distance of any free support vector to the hyperplane in the (infinite-dimensional) Z
space versus log10 C. Describe your findings.

15. (*) Following Question 14, when fixing C = 0.1, plot Eout versus log10 γ ∈ {0, 1, 2, 3, 4}. Describe
your findings.
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16. (*) Following Question 14 and consider a validation procedure that randomly samples 1000 ex-
amples from the training set for validation and leaves the other examples for training g−svm. Fix
C = 0.1 and use the validation procedure to choose the best log10 γ ∈ {−1, 0, 1, 2, 3} according
to Eval. If there is a tie of Eval, choose the smallest γ. Repeat the procedure 100 times. Plot a
histogram for the number of times each log10 γ is selected.

Bonus: Dual of Dual

17. (Bonus, 20 points) Derive a simplified Lagrange dual problem of the hard-margin SVM dual. Is
your Lagrange dual problem of the hard-margin SVM dual the same as the hard-margin SVM
primal? Are they “similar” in any sense? Describe your findings.

Bonus: L2-Error Soft-Margin Support Vector Machines versus
Hard-Margin Ones

18. (Bonus, 20 points) Problem (P2) in Question 5 is equivalent to a linear hard-margin support vector
machine (primal problem) that takes examples (x̃n, yn) instead of (xn, yn). That is, the hard-
margin dual problem that involves x̃n is simply the dual problem of (P2). Design such an x̃n and
prove how to connect w̃ back to w. (Hint: there is more than one way to design so)
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