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Matrix Factorization

Roadmap

@ Embedding Numerous Features: Kernel Models
@® Combining Predictive Features: Aggregation Models
@ Distilling Implicit Features: Extraction Models

Lecture 14: Radial Basis Function Network

linear aggregation of distance-based similarities
using k-Means clustering for prototype finding

Lecture 15: Matrix Factorization

e Linear Network Hypothesis

e Basic Matrix Factorization

e Stochastic Gradient Descent

e Summary of Extraction Models
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Matrix Factorization Linear Network Hypothesis

Recommender System Revisited

data skill

o data: how ‘many users’ have rated ‘some movies’
e skill: predict how a user would rate an unrated movie

A Hot Problem

« competition held by Netflix in 2006

+ 100,480,507 ratings that 480,189 users gave to 17,770 movies
* 10% improvement = 1 million dollar prize

 data Dy, for m-th movie:
{(Xn = (N), ¥n = ram): user nrated movie m}
—abstract feature X, = (n)

how to learn our preferences from data? J
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Matrix Factorization Linear Network Hypothesis

Binary Vector Encoding of Categorical Feature

X, = (n): user IDs, such as 1126, 5566, 6211, ...
—called categorical features

» categorical features, e.g.
e IDs
e blood type: A, B, AB, O
e programming languages: C, C++, Java, Python, ...
+ many ML models operate on humerical features
e linear models
o extended linear models such as NNet
—except for decision trees

¢ need: encoding (transform) from categorical to numerical

binary vector encoding:

A=[1000]",8=[0100],
aB=[0010]",0=[0001]"
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Matrix Factorization Linear Network Hypothesis

Feature Extraction from Encoded Vector
encoded data D/, for m-th movie:

{(xn = BinaryVectorEncoding(n), y, = rhm): user nrated movie m}
or, joint data D

{(xn: BinaryVectorEncoding(n),Yn = 1[rn1 ? ? rha s ... r,,M]T)}

v

idea: try feature extraction using N-d-M NNet without all x(()/v)

X

tanh \
/ \ S =y
Xa
is tanh necessary? :-) J
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Matrix Factorization Linear Network Hypothesis

‘Linear Network’ Hypothesis

) b / @
= M w. {
_ T. : S ~ =
X3 — ~ / — \
P \ / ~ Y3
X4
{(xn: BinaryVectorEncoding(n),Yn=1[rn1 ? ? rha s ... r,,M]T)}

v

* rename: V' for [w,("”} and W for [Wﬁ)]
« hypothesis: h(x) = W Vx
e per-user output: h(x,) = W'v,, where v, is n-th column of V

linear network for recommender system:
learn V.and W
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Matrix Factorization Linear Network Hypothesis

Fun Time

For N users, M movies, and d ‘features’, how many variables need to
be used to specify a linear network hypothesis h(x) = W vx?

ON+M+d
®ON-M-d

® N+M)-d
O (N-M)+d




Matrix Factorization Linear Network Hypothesis

Fun Time

For N users, M movies, and d ‘features’, how many variables need to
be used to specify a linear network hypothesis h(x) = W vx?

ON+M+d
®ON-M-d

® N+M)-d
O (N-M)+d

Reference Answer: @
simply N- d for VT and d - M for W
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Matrix Factorization Basic Matrix Factorization

Linear Network: Linear Model Per Movie

linear network:
h(x) =W’ vx
~~
®(x)
—for m-th movie, just linear model h,(x) = w] ®(x)
subject to shared transform &

o for every Dy, want rp, = yn ~ W/ v,
e Ej, over all D, with squared error measure:

Ein({wWm}, {vn}) = Z (rnm N va") :

user n rated movie m

linear network: transform and linear modelS
jointly learned from all Dy, J
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Matrix Factorization Basic Matrix Factorization

Matrix Factorization

rnm =~ W v, =vIw, < R~ VW
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Hsuan-Tien Lin (NTU CSIE)

) Matrix Factorization Model

learning:

known rating
— learned factors v, and w,
— unknown rating prediction

similar modeling can be used for
other abstract features )
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Matrix Factorization Basic Matrix Factorization

Matrix Factorization Learning

T En((n), () ST (1 wiwe)

user n rated movie m

M 2
_ T
— E (rnm - wmvn>

m=1 \(Xn,/nm)EDm

» two sets of variables:
can consider alternating minimization, remember? :-)
e when v, fixed, minimizing w,, = minimize E;, within D,
—simply per-movie (per-Dp,) linear regression without wy
¢ when w,, fixed, minimizing v,?
—per-user linear regression without v
by symmetry between users/movies

called alternating least squares algorithm )
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Matrix Factorization Basic Matrix Factorization

Alternating Least Squares

Alternating Least Squares

© initialize d dimension vectors {w,}, {v,}
@ alternating optimization of E;,: repeatedly
© optimize wq,wo, ... wy:
update w,, by m-th-movie linear regression on {(Vn, r'nm)}
® optimize vi,va, ..., Vy:
update v, by n-th-user linear regression on {(Wm, rnm)}

until converge

e initialize: usually just randomly

e converge:
guaranteed as Ej, decreases during alternating minimization

alternating least squares:
the ‘tango’ dance between users/movies J
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Matrix Factorization Basic Matrix Factorization

Linear Autoencoder versus Matrix Factorization

Linear Autoencoder Matrix Factorization

X~ W (WTX) R~ VW

 motivation: * motivation:

special d-d-d linear NNet N-d-M linear NNet
e error measure: e error measure:

squared on all xp; squared on known rpm
« solution: global optimal at e solution: local optimal via

eigenvectors of X'X alternating least squares
o usefulness: extract ¢ usefulness: extract

dimension-reduced features | hidden user/movie features |

linear autoencoder
= special matrix factorization of complete X J
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Matrix Factorization Basic Matrix Factorization

Fun Time

How many least squares problems does the alternating least squares
algorithm needs to solve in one iteration of alternation?

© number of movies M
® number of users N
O M+N

O M-N




Matrix Factorization Basic Matrix Factorization

Fun Time

How many least squares problems does the alternating least squares
algorithm needs to solve in one iteration of alternation?

© number of movies M
® number of users N
O M+N

O M-N

Reference Answer: @

simply M per-movie problems and N per-user
problems
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Matrix Factorization Stochastic Gradient Descent

Another Possibility: Stochastic Gradient Descent

Ein({wm}, {Vn}) > (r””’ B W;’V”>2

user n rated movie m
err(user n, movie m, rating rpm)

SGD: randomly pick one example within the > &
update with gradient to per-example err, remember? :-)

o ‘efficient’ per iteration
e simple to implement
o easily extends to other err

next: SGD for matrix factorization )
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Matrix Factorization Stochastic Gradient Descent

Gradient of Per-Example Error Function

rr(user n, movie m, rating rom) = (rnm — w;,vn) 2

0 unless n= 1126

(user n, movie m, rating rym) =

Ve err(user n, movie m, rating r,m) = 0 unless m = 6211
( )
( )=

VV1126 err

Vv, err(user n, movie m,rating rpm) = — 2 (rnm — w,f,v,,) Wn,

A\ err(user n, movie m, rating rmm

T
(rnm WmVn) Vn

per-example gradient
—(residual)(the other feature vector) J
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Matrix Factorization Stochastic Gradient Descent

SGD for Matrix Factorization

SGD for Matrix Factorization

initialize d dimension vectors {w,}, {v,} randomly
fort=0,1,..., T

© randomly pick (n, m) within all known rp,,

@ calculate residual Frm = (fpm — W/, Vp)

©® SGD-update:
+n- anW%d

= 1) © anvgld

vgew — vgld

wew . wold

SGD: perhaps most popular large-scale
matrix factorization algorithm
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Matrix Factorization Stochastic Gradient Descent

SGD for Matrix Factorization in Practice

KDDCup 2011 Track 1: World Champion Solution by NTU

e specialty of data (application need):
per-user training ratings earlier than test ratings in time

e training/test mismatch: typical sampling bias, remember? :-)

e want: emphasize latter examples
e last 7' iterations of SGD: only those T’ examples considered
—learned {wn,}, {vn} favoring those

e our idea: time-deterministic GD that visits latter examples last
—consistent improvements of test performance

if you understand the behavior of techniques,
easier to modify for your real-world use J
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Matrix Factorization Stochastic Gradient Descent

Fun Time

If all w;, and v, are initialized to the 0 vector, what will NOT happen in
SGD for matrix factorization?

© all w,, are always 0

® all v, are always 0

® every residual 7, = the original rating
@ E;, decreases after each SGD update




Matrix Factorization Stochastic Gradient Descent

Fun Time

If all w;, and v, are initialized to the 0 vector, what will NOT happen in
SGD for matrix factorization?

© all w,, are always 0

® all v, are always 0

® every residual 7, = the original rating

@ E;, decreases after each SGD update

Reference Answer: @

The 0 feature vectors provides a per-example
gradient of 0 for every example. So Ej, cannot
be further decreased.
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Matrix Factorization Summary of Extraction Models

Map of Extraction Models

extraction models: feature transform ® as hidden variables
in addition to linear model J

Adaptive/Gradient Boosting
hypotheses g;; weights «;

Neural Network/ RBF Network Matrix Factorization
Deep Learning

weights w,.(.e); RBF centers p; user features vp;

weights WI-E-L) weights 5 movie features w,

|

I A

k Nearest Neighbor

Xn,-neighbor RBF;
weights y,

v

extraction models: a rich family )
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Matrix Factorization Summary of Extraction Models

Map of Extraction Techniques

Adaptive/Gradient Boosting
functional gradient descent

Neural Network/ RBF Network Matrix Factorization
Deep Learning
SGD (backprop) SGD
alternating leastSQR

autoencoder k-means clustering

k Nearest Neighbor

lazy learning :-)

extraction techniques: quite diverse )
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Matrix Factorization Summary of Extraction Models

Pros and Cons of Extraction Models

Neural Network/ RBF Network Matrix Factorization

Deep Learning

=

e ‘easy’: ¢ ‘hard’:

reduces human burden in
designing features

o powerful:
if enough hidden variables
considered

non-convex optimization
problems in general

o overfitting:
needs proper
regularization/validation

be careful when applying extraction models J
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Matrix Factorization Summary of Extraction Models

Fun Time

Which of the following extraction model extracts Gaussian centers by
k-means and aggregate the Gaussians linearly?

© RBF Network

® Deep Learning

@ Adaptive Boosting

@ Matrix Factorization




Matrix Factorization Summary of Extraction Models

Fun Time

Which of the following extraction model extracts Gaussian centers by
k-means and aggregate the Gaussians linearly?

© RBF Network

® Deep Learning

@ Adaptive Boosting

O Matrix Factorization

Reference Answer: @

Congratulations on being an in
extraction models!
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Matrix Factorization Summary of Extraction Models

Summary

@ Embedding Numerous Features: Kernel Models
@® Combining Predictive Features: Aggregation Models
® Distilling Implicit Features: Extraction Models

Lecture 15: Matrix Factorization

o Linear Network Hypothesis
feature extraction from binary vector encoding
e Basic Matrix Factorization

alternating least squares between user/movie
e Stochastic Gradient Descent

efficient and easily modified for practical use
e Summary of Extraction Models

powerful thus need careful use

¢ next: closing remarks of techniques
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