Machine Learning Techniques (機器學習技法)

Lecture 14: Radial Basis Function Network Hsuan-Tien Lin (林軒田) htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 13: Deep Learning

pre-training with denoising autoencoder (non-linear PCA) and fine-tuning with backprop for NNet with many layers

Lecture 14: Radial Basis Function Network

- RBF Network Hypothesis
- RBF Network Learning
- k-Means Algorithm
- k-Means and RBF Network in Action

RBF Network Hypothesis

Gaussian SVM Revisited

$$g_{\text{SVM}}(\mathbf{x}) = \operatorname{sign}\left(\sum_{\text{SV}} \alpha_n y_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right) + b\right)$$

Gaussian SVM: find α_n to combine Gaussians centered at \mathbf{x}_n ; achieve large margin in infinite-dimensional space, remember? :-)

- Gaussian kernel: also called Radial Basis Function (RBF) kernel
 - radial: only depends on distance between x and 'center' x_n
 - basis function: to be 'combined'

• let
$$g_n(\mathbf{x}) = \mathbf{y}_n \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_n\|^2\right)$$
:

$$g_{\text{SVM}}(\mathbf{x}) = \operatorname{sign}\left(\sum_{\mathbf{SV}} \alpha_n g_n(\mathbf{x}) + b\right)$$

-linear aggregation of selected radial hypotheses

Radial Basis Function (RBF) Network: linear aggregation of radial hypotheses

Hsuan-Tien Lin (NTU CSIE)

Radial Basis Function Network From Neural Network to RBF Network

- hidden layer different: (inner-product + tanh) versus (distance + Gaussian)
- output layer same: just linear aggregation

RBF Network: historically a type of NNet

Hsuan-Tien Lin (NTU CSIE)

Radial Basis Function Network

RBF Network Hypothesis RBF Network Hypothesis

key variables:

```
centers \mu_m; (signed) votes \beta_m
```

RBF Network

g_{SVM} for Gaussian-SVM

- RBF: Gaussian; Output: sign (binary classification)
- M = #SV; μ_m : SVM SVs \mathbf{x}_m ; β_m : $\alpha_m y_m$ from SVM Dual

learning: given RBF and Output, decide μ_m and β_m

Hsuan-Tien Lin (NTU CSIE)

RBF and Similarity

general similarity function between x and x':

Neuron(
$$\mathbf{x}, \mathbf{x}'$$
) = tanh($\gamma \mathbf{x}^T \mathbf{x}' + 1$)
DNASim(\mathbf{x}, \mathbf{x}') = EditDistance(\mathbf{x}, \mathbf{x}')

kernel: similarity via \mathbb{Z} -space inner product —governed by Mercer's condition, remember? :-) Poly(\mathbf{x}, \mathbf{x}') = $(1 + \mathbf{x}^T \mathbf{x}')^2$

$$Gaussian(\mathbf{x}, \mathbf{x}') = \exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

 $\begin{aligned} & \text{Truncated}(\mathbf{x}, \mathbf{x}') = \llbracket \|\mathbf{x} - \mathbf{x}'\| \leq 1 \rrbracket (1 - \|\mathbf{x} - \mathbf{x}'\|)^2 \\ & \text{RBF: similarity via } \mathcal{X}\text{-space distance} \\ & \text{-often monotonically non-increasing to distance} \end{aligned}$

RBF Network: distance similarity-to-centers as feature transform

Hsuan-Tien Lin (NTU CSIE)

Fun Time

Which of the following is not a radial basis function?

1
$$\phi(\mathbf{x}, \mu) = \exp(-\gamma ||\mathbf{x} - \mu||^2)$$

2 $\phi(\mathbf{x}, \mu) = -\sqrt{\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \mu + \mu^T \mu}$
3 $\phi(\mathbf{x}, \mu) = [\![\mathbf{x} = \mu]\!]$
4 $\phi(\mathbf{x}, \mu) = \mathbf{x}^T \mathbf{x} + \mu^T \mu$

Fun Time

Which of the following is not a radial basis function?

1
$$\phi(\mathbf{x}, \mu) = \exp(-\gamma ||\mathbf{x} - \mu||^2)$$

2 $\phi(\mathbf{x}, \mu) = -\sqrt{\mathbf{x}^T \mathbf{x} - 2\mathbf{x}^T \mu + \mu^T \mu}$
3 $\phi(\mathbf{x}, \mu) = [\![\mathbf{x} = \mu]\!]$
4 $\phi(\mathbf{x}, \mu) = \mathbf{x}^T \mathbf{x} + \mu^T \mu$

Reference Answer: (4)

Note that (3) is an extreme case of (1)(Gaussian) with $\gamma \to \infty$, and (2) contains an $\|\mathbf{x} - \boldsymbol{\mu}\|^2$ somewhere :-). RBF Network Learning

Full RBF Network

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{M} \beta_m \text{RBF}(\mathbf{x}, \boldsymbol{\mu}_m)\right)$$

- full RBF Network: M = N and each $\mu_m = \mathbf{x}_m$
- physical meaning: each x_m influences similar x by β_m
- e.g. uniform influence with $\beta_m = 1 \cdot y_m$ for binary classification

$$g_{\text{uniform}}(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{N} y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right)\right)$$

-aggregate each example's opinion subject to similarity

full RBF Network: lazy way to decide μ_m

Hsuan-Tien Lin (NTU CSIE)

RBF Network Learning

Nearest Neighbor

$$g_{\text{uniform}}(\mathbf{x}) = \operatorname{sign}\left(\sum_{m=1}^{N} y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right)\right)$$

- $\exp(-\gamma \|\mathbf{x} \mathbf{x}_m\|^2)$: maximum when **x closest to \mathbf{x}_m** —maximum one often dominates the $\sum_{m=1}^{N}$ term
- take y_m of maximum exp(...) instead of voting of all y_m
 —selection instead of aggregation
- physical meaning:

 $g_{nbor}(\mathbf{x}) = \mathbf{y}_m$ such that \mathbf{x} closest to \mathbf{x}_m

-called nearest neighbor model

• can uniformly aggregate k neighbors also: k nearest neighbor

k nearest neighbor: also lazy but very intuitive

Hsuan-Tien Lin (NTU CSIE)

Interpolation by Full RBF Network

full RBF Network for squared error regression:

$$h(\mathbf{x}) = \text{Output}\left(\sum_{m=1}^{N} \beta_m \text{RBF}(\mathbf{x}, \mathbf{x}_m)\right)$$

just linear regression on RBF-transformed data

 $\mathbf{z}_n = [\mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_1), \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_2), \dots, \mathsf{RBF}(\mathbf{x}_n, \mathbf{x}_N)]$

- optimal β ? $\beta = (Z^T Z)^{-1} Z^T y$, if $Z^T Z$ invertible, remember? :-)
- size of Z? N (examples) by N (centers)
 —symmetric square matrix
- theoretical fact: if \mathbf{x}_n all different, Z with Gaussian RBF invertible

optimal β with invertible Z: $\beta = Z^{-1}y$

Hsuan-Tien Lin (NTU CSIE)

RBF Network Learning

Regularized Full RBF Network

full Gaussian RBF Network for regression: $\beta = Z^{-1}y$

 $g_{\text{RBF}}(\mathbf{x}_1) = \boldsymbol{\beta}^T \mathbf{z}_1 = \mathbf{y}^T \mathbf{Z}^{-1} (\text{first column of } \mathbf{Z}) = \mathbf{y}^T \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T = y_1$

 $-g_{RBF}(\mathbf{x}_n) = y_n$, i.e. $E_{in}(g_{RBF}) = 0$, yeah!! :-)

- called exact interpolation for function approximation
- but overfitting for learning? :-(
- how about regularization? e.g. ridge regression for β instead
 —optimal β = (Z^TZ + λI)⁻¹Z^Ty
- seen Z? $Z = [Gaussian(\mathbf{x}_n, \mathbf{x}_m)] = Gaussian kernel matrix K$

effect of regularization in different spaces:

kernel ridge regression: $\boldsymbol{\beta} = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$; regularized full RBFNet: $\boldsymbol{\beta} = (\mathbf{Z}^T \mathbf{Z} + \lambda \mathbf{I})^{-1} \mathbf{Z}^T \mathbf{y}$

Hsuan-Tien Lin (NTU CSIE)

Fewer Centers as Regularization

recall:

$$g_{\text{SVM}}(\mathbf{x}) = \operatorname{sign}\left(\sum_{\text{SV}} \alpha_m y_m \exp\left(-\gamma \|\mathbf{x} - \mathbf{x}_m\|^2\right) + b\right)$$

- next: M << N instead of M = N
- effect: regularization

by constraining number of centers and voting weights

physical meaning of centers µ_m: prototypes

remaining question: how to extract prototypes?

Hsuan-Tien Lin (NTU CSIE)

Fun Time

If $\mathbf{x}_1 = \mathbf{x}_2$, what happens in the Z matrix of full Gaussian RBF network?

- 1 the first two rows of the matrix are the same
- 2 the first two columns of the matrix are different
- 3 the matrix is invertible
- 4 the sub-matrix at the intersection of the first two rows and the first two columns contains a constant of 0

Fun Time

If $\mathbf{x}_1 = \mathbf{x}_2$, what happens in the Z matrix of full Gaussian RBF network?

- 1 the first two rows of the matrix are the same
- 2 the first two columns of the matrix are different
- 3 the matrix is invertible
- 4 the sub-matrix at the intersection of the first two rows and the first two columns contains a constant of 0

Reference Answer: (1)

It is easy to see that the first two rows must be the same; so must the first two columns. The two same rows makes the matrix singular; the sub-matrix in (4) contains a constant of $1 = \exp(-0)$ instead of 0. Radial Basis Function Network

k-Means Algorithm

Good Prototypes: Clustering Problem

if $\mathbf{x}_1 \approx \mathbf{x}_2$,

- \implies no need both RBF(\mathbf{x}, \mathbf{x}_1) & RBF(\mathbf{x}, \mathbf{x}_2) in RBFNet,
- \implies cluster \mathbf{x}_1 and \mathbf{x}_2 by one prototype $\mu \approx \mathbf{x}_1 \approx \mathbf{x}_2$
 - clustering with prototype:
 - partition $\{\mathbf{x}_n\}$ to disjoint sets S_1, S_2, \cdots, S_M
 - choose μ_m for each S_m

-hope: $\mathbf{x}_1, \mathbf{x}_2$ both $\in \mathbf{S}_m \Leftrightarrow \mu_m \approx \mathbf{x}_1 \approx x_2$

cluster error with squared error measure:

$$\boldsymbol{E}_{\text{in}}(\boldsymbol{S}_{1},\cdots,\boldsymbol{S}_{M};\boldsymbol{\mu}_{1},\cdots,\boldsymbol{\mu}_{M}) = \frac{1}{N}\sum_{n=1}^{N}\sum_{m=1}^{M}\left[\left[\boldsymbol{x}_{n}\in\boldsymbol{S}_{m}\right]\right]\left\|\boldsymbol{x}_{n}-\boldsymbol{\mu}_{m}\right\|^{2}$$

goal: with S_1, \dots, S_M being a partition of $\{\mathbf{x}_n\}$, $\min_{\{S_1, \dots, S_M; \mu_1, \dots, \mu_M\}} E_{in}(S_1, \dots, S_M; \mu_1, \dots, \mu_M)$

Hsuan-Tien Lin (NTU CSIE)

k-Means Algorithm

Partition Optimization

with S_1, \dots, S_M being a partition of $\{\mathbf{x}_n\}$,

$$\min_{\{\boldsymbol{\mathcal{S}}_1,\cdots,\boldsymbol{\mathcal{S}}_M;\boldsymbol{\mu}_1,\cdots,\boldsymbol{\mu}_M\}} \sum_{n=1}^N \sum_{m=1}^M [\![\boldsymbol{\mathbf{x}}_n \in \boldsymbol{\mathcal{S}}_m]\!] \|\boldsymbol{\mathbf{x}}_n - \boldsymbol{\mu}_m\|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if μ_1, \cdots, μ_M fixed, for each \mathbf{x}_n

- $[x_n \in S_m]$: choose one and only one subset
- $\|\mathbf{x}_n \boldsymbol{\mu}_m\|^2$: distance to each prototype

optimal chosen subset S_m = the one with minimum $\|\mathbf{x}_n - \boldsymbol{\mu}_m\|^2$

for given μ_1, \dots, μ_M , each **x**_n 'optimally partitioned' using its **closest** μ_m

Hsuan-Tien Lin (NTU CSIE)

Radial Basis Function Network

k-Means Algorithm

Prototype Optimization

with S_1, \dots, S_M being a partition of $\{\mathbf{x}_n\}$,

$$\min_{\{\boldsymbol{\mathcal{S}}_1,\cdots,\boldsymbol{\mathcal{S}}_M;\boldsymbol{\mu}_1,\cdots,\boldsymbol{\mu}_M\}}\sum_{n=1}^N\sum_{m=1}^M[\![\boldsymbol{\mathbf{x}}_n\in\boldsymbol{\mathcal{S}}_m]\!]\|\boldsymbol{\mathbf{x}}_n-\boldsymbol{\mu}_m\|^2$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly

if
$$S_1, \dots, S_M$$
 fixed, just unconstrained optimization for each μ_m
 $\nabla_{\mu_m} E_{in} = -2 \sum_{n=1}^N [[\mathbf{x}_n \in S_m]](\mathbf{x}_n - \mu_m) = -2 \left(\left(\sum_{\mathbf{x}_n \in S_m} \mathbf{x}_n \right) - |S_m| \mu_m \right)$
optimal prototype μ_m = average of \mathbf{x}_n within S_m

for given S_1, \dots, S_M , each μ_n 'optimally computed' as **consensus** within S_m

Hsuan-Tien Lin (NTU CSIE)

k-Means Algorithm

k-Means Algorithm

use k prototypes instead of M historically (different from k nearest neighbor, though)

k-Means Algorithm

1 initialize $\mu_1, \mu_2, \dots, \mu_k$: say, as k randomly chosen \mathbf{x}_n

2 alternating optimization of E_{in}: repeatedly

- optimize S₁, S₂,..., S_k: each x_n 'optimally partitioned' using its closest μ_i
- **2** optimize $\mu_1, \mu_2, \dots, \mu_k$:

each μ_n 'optimally computed' as consensus within S_m

until converge

converge: no change of $S_1, S_2, ..., S_k$ anymore —guaranteed as E_{in} decreases during alternating minimization

k-Means: the most popular **clustering** algorithm through **alternating minimization**

Hsuan-Tien Lin (NTU CSIE)

k-Means Algorithm

RBF Network Using k-Means

RBF Network Using k-Means

- 1 run k-Means with k = M to get $\{\mu_m\}$
- **2** construct transform $\Phi(\mathbf{x})$ from RBF (say, Gaussian) at μ_m

 $\boldsymbol{\Phi}(\boldsymbol{x}) = [\mathsf{RBF}(\boldsymbol{x},\boldsymbol{\mu}_1),\mathsf{RBF}(\boldsymbol{x},\boldsymbol{\mu}_2),\ldots,\mathsf{RBF}(\boldsymbol{x},\boldsymbol{\mu}_M)]$

- **3** run linear model on $\{(\Phi(\mathbf{x}_n), y_n)\}$ to get β
- return $g_{\text{RBFNET}}(\mathbf{x}) = \text{LinearHypothesis}\left(\boldsymbol{\beta}, \boldsymbol{\Phi}(\mathbf{x})\right)$
 - using unsupervised learning (k-Means) to assist feature transform—like autoencoder
 - parameters: *M* (prototypes), RBF (such as γ of Gaussian)

RBF Network: a simple (old-fashioned) model

Hsuan-Tien Lin (NTU CSIE)

Fun Time

For *k*-Means, consider examples $\mathbf{x}_n \in \mathbb{R}^2$ such that all $x_{n,1}$ and $x_{n,2}$ are non-zero. When fixing two prototypes $\mu_1 = [1, 1]$ and $\mu_2 = [-1, 1]$, which of the following set is the optimal S_1 ?

 $\{ \mathbf{x}_n : x_{n,1} > 0 \}$ $\{ \mathbf{x}_n : x_{n,1} < 0 \}$ $\{ \mathbf{x}_n : x_{n,2} > 0 \}$ $\{ \mathbf{x}_n : x_{n,2} < 0 \}$

Fun Time

For *k*-Means, consider examples $\mathbf{x}_n \in \mathbb{R}^2$ such that all $x_{n,1}$ and $x_{n,2}$ are non-zero. When fixing two prototypes $\mu_1 = [1, 1]$ and $\mu_2 = [-1, 1]$, which of the following set is the optimal S_1 ?

- 1 { \mathbf{x}_n : $x_{n,1} > 0$ } 2 { \mathbf{x}_n : $x_{n,1} < 0$ } 3 { \mathbf{x}_n : $x_{n,2} > 0$ }
- **4** {**x**_{*n*}: $x_{n,2} < 0$ }

Reference Answer: (1)

Note that S_1 contains examples that are closer to μ_1 than μ_2 .

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Beauty of k-Means

k = 4

usually works well with proper *k* and initialization

Hsuan-Tien Lin (NTU CSIE)

Difficulty of k-Means

'sensitive' to *k* and initialization

Difficulty of k-Means

'sensitive' to *k* and initialization

RBF Network Using k-Means

reasonable performance with proper centers

Hsuan-Tien Lin (NTU CSIE)

Full RBF Network

full RBF Network: generally less useful

Fun Time

When coupled with ridge linear regression, which of the following RBF Network is 'most regularized'?

- **1** small M and small λ
- **2** small M and large λ
- **(3)** large M and small λ
- 4 large M and large λ

Fun Time

When coupled with ridge linear regression, which of the following RBF Network is 'most regularized'?

- **1** small M and small λ
- 2 small M and large λ
- ${f 3}$ large ${\it M}$ and small λ
- 4 large M and large λ

Reference Answer: (2)

small *M*: fewer weights and more regularized; large λ : shorter β more and more regularized.

Summary

- Embedding Numerous Features: Kernel Models
- 2 Combining Predictive Features: Aggregation Models
- Oistilling Implicit Features: Extraction Models

Lecture 14: Radial Basis Function Network

- RBF Network Hypothesis prototypes instead of neurons as transform
- RBF Network Learning linear aggregation of prototype 'hypotheses'
- k-Means Algorithm

clustering with alternating optimization

- k-Means and RBF Network in Action
 proper choice of # prototypes important
- next: extracting features from abstract data