Machine Learning Techniques

Lecture 14：Radial Basis Function Network
Hsuan－Tien Lin（林軒田）
htlin＠csie．ntu．edu．tw

Department of Computer Science
\＆Information Engineering
National Taiwan University
（國立台灣大學資訊工程系）

Roadmap

(1) Embedding Numerous Features: Kernel Models
(2) Combining Predictive Features: Aggregation Models
(3) Distilling Implicit Features: Extraction Models

Lecture 13: Deep Learning
pre-training with denoising autoencoder (non-linear PCA) and fine-tuning with backprop for NNet with many layers

Lecture 14: Radial Basis Function Network

- RBF Network Hypothesis
- RBF Network Learning
- k-Means Algorithm
- k-Means and RBF Network in Action

Gaussian SVM Revisited

$$
g_{\mathrm{svM}}(\mathbf{x})=\operatorname{sign}\left(\sum_{\mathrm{sv}} \alpha_{n} y_{n} \exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}_{n}\right\|^{2}\right)+b\right)
$$

Gaussian SVM: find α_{n} to combine Gaussians centered at x_{n}; achieve large margin in infinite-dimensional space, remember? :-)

- Gaussian kernel: also called Radial Basis Function (RBF) kernel
- radial: only depends on distance between \mathbf{x} and 'center' \mathbf{x}_{n}
- basis function: to be 'combined'
- let $g_{n}(\mathbf{x})=y_{n} \exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}_{n}\right\|^{2}\right)$:

$$
g_{\mathrm{svM}}(\mathbf{x})=\operatorname{sign}\left(\sum_{\mathrm{sv}} \alpha_{n} g_{n}(\mathbf{x})+b\right)
$$

-linear aggregation of selected radial hypotheses

Radial Basis Function (RBF) Network: linear aggregation of radial hypotheses

From Neural Network to RBF Network

RBF Network

- hidden layer different:
(inner-product + tanh) versus (distance + Gaussian)
- output layer same: just linear aggregation

RBF Network: historically a type of NNet

RBF Network

$h(\mathbf{x})$
$=\operatorname{Output}\left(\sum_{m=1}^{M} \beta_{m} \operatorname{RBF}\left(\mathbf{x}, \boldsymbol{\mu}_{m}\right)+b\right)$
key variables:
centers μ_{m}; (signed) votes β_{m}

$g_{\text {svm }}$ for Gaussian-SVM

- RBF: Gaussian; Output: sign (binary classification)
- $M=\#$ SV; $\quad \boldsymbol{\mu}_{m}$: SVM SVs $\mathbf{x}_{m} ; \quad \beta_{m}: \alpha_{m} y_{m}$ from SVM Dual
learning: given RBF and Output, decide μ_{m} and β_{m} general similarity function between \mathbf{x} and \mathbf{x}^{\prime} :

$$
\begin{gathered}
\text { Neuron }\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\tanh \left(\gamma \mathbf{x}^{\top} \mathbf{x}^{\prime}+1\right) \\
\text { DNASim }\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\operatorname{EditDistance}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
\end{gathered}
$$

kernel: similarity via \mathcal{Z}-space inner product
-governed by Mercer's condition, remember? :-)
$\operatorname{Poly}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{2}$
$\operatorname{Gaussian}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)$

$$
\begin{array}{r}
\operatorname{Truncated}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\llbracket\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\| \leq 1 \rrbracket\left(1-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|\right)^{2} \\
\text { RBF: similarity via } \mathcal{X} \text {-space distance } \\
\text {-often monotonically non-increasing to distance }
\end{array}
$$

RBF Network: distance similarity-to-centers as feature transform

Fun Time

Which of the following is not a radial basis function?
(1) $\phi(\mathbf{x}, \boldsymbol{\mu})=\exp \left(-\gamma\|\mathbf{x}-\boldsymbol{\mu}\|^{2}\right)$
(2) $\phi(\mathbf{x}, \boldsymbol{\mu})=-\sqrt{\mathbf{x}^{T} \mathbf{x}-2 \mathbf{x}^{T} \boldsymbol{\mu}+\boldsymbol{\mu}^{T} \boldsymbol{\mu}}$
(3) $\phi(\mathbf{x}, \boldsymbol{\mu})=\llbracket \mathbf{x}=\boldsymbol{\mu} \rrbracket$
(4) $\phi(\mathbf{x}, \boldsymbol{\mu})=\mathbf{x}^{T} \mathbf{x}+\boldsymbol{\mu}^{T} \boldsymbol{\mu}$

Fun Time

Which of the following is not a radial basis function?
(1) $\phi(\mathbf{x}, \boldsymbol{\mu})=\exp \left(-\gamma\|\mathbf{x}-\boldsymbol{\mu}\|^{2}\right)$
(2) $\phi(\mathbf{x}, \boldsymbol{\mu})=-\sqrt{\mathbf{x}^{\top} \mathbf{x}-2 \mathbf{x}^{\top} \boldsymbol{\mu}+\boldsymbol{\mu}^{\top} \boldsymbol{\mu}}$
(3) $\phi(\mathbf{x}, \boldsymbol{\mu})=\llbracket \mathbf{x}=\boldsymbol{\mu} \rrbracket$
(4) $\phi(\mathbf{x}, \boldsymbol{\mu})=\mathbf{x}^{\top} \mathbf{x}+\boldsymbol{\mu}^{\top} \boldsymbol{\mu}$

Reference Answer: (4)

Note that (3) is an extreme case of (1)
(Gaussian) with $\gamma \rightarrow \infty$, and (2) contains an $\|\mathbf{x}-\boldsymbol{\mu}\|^{2}$ somewhere :-).

Full RBF Network

$$
h(\mathbf{x})=\operatorname{Output}\left(\sum_{m=1}^{M} \beta_{m} \operatorname{RBF}\left(\mathbf{x}, \mu_{m}\right)\right)
$$

- full RBF Network: $M=N$ and each $\mu_{m}=\mathbf{x}_{m}$
- physical meaning: each \mathbf{x}_{m} influences similar \mathbf{x} by β_{m}
- e.g. uniform influence with $\beta_{m}=1 \cdot y_{m}$ for binary classification

$$
g_{\text {uniform }}(\mathbf{x})=\operatorname{sign}\left(\sum_{m=1}^{N} y_{m} \exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}_{m}\right\|^{2}\right)\right)
$$

-aggregate each example's opinion subject to similarity
full RBF Network: lazy way to decide μ_{m}

Nearest Neighbor

$$
g_{\text {uniform }}(\mathbf{x})=\operatorname{sign}\left(\sum_{m=1}^{N} y_{m} \exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}_{m}\right\|^{2}\right)\right)
$$

- $\exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}_{m}\right\|^{2}\right)$: maximum when \mathbf{x} closest to \mathbf{x}_{m} -maximum one often dominates the $\sum_{m=1}^{N}$ term
- take y_{m} of maximum $\exp (\ldots)$ instead of voting of all y_{m} -selection instead of aggregation
- physical meaning:

$$
g_{\mathrm{nbor}}(\mathbf{x})=y_{m} \text { such that } \mathbf{x} \text { closest to } \mathbf{x}_{m}
$$

-called nearest neighbor model

- can uniformly aggregate k neighbors also: k nearest neighbor
k nearest neighbor:
also lazy but very intuitive

Interpolation by Full RBF Network

full RBF Network for squared error regression:

$$
h(\mathbf{x})=\operatorname{Outaf}\left(\sum_{m=1}^{N} \beta_{m} \operatorname{RBF}\left(\mathbf{x}, \mathbf{x}_{m}\right)\right)
$$

- just linear regression on RBF-transformed data

$$
\mathbf{z}_{n}=\left[\operatorname{RBF}\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right), \operatorname{RBF}\left(\mathbf{x}_{n}, \mathbf{x}_{2}\right), \ldots, \operatorname{RBF}\left(\mathbf{x}_{n}, \mathbf{x}_{N}\right)\right]
$$

- optimal β ? $\beta=\left(Z^{T} Z\right)^{-1} Z^{T} \mathbf{y}$, if $Z^{T} Z$ invertible, remember? :-)
- size of Z ? N (examples) by N (centers)
-symmetric square matrix
- theoretical fact: if \mathbf{x}_{n} all different, Z with Gaussian RBF invertible

$$
\text { optimal } \beta \text { with invertible } \mathrm{Z}: \beta=\mathrm{Z}^{-1} \mathbf{y}
$$

Regularized Full RBF Network

full Gaussian RBF Network for regression: $\beta=\mathrm{Z}^{-1} \mathbf{y}$
$g_{\text {RBF }}\left(\mathrm{X}_{1}\right)=\boldsymbol{\beta}^{\top} \mathrm{Z}_{1}=\mathbf{y}^{\top} \mathrm{Z}^{-1}($ first column of Z$)=\mathbf{y}^{\top}\left[\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right]^{\top}=y_{1}$

- $g_{\text {RBF }}\left(\mathrm{x}_{n}\right)=y_{n}$, i.e. $E_{\text {in }}\left(g_{\text {RBF }}\right)=0$, yeah!! :-)
- called exact interpolation for function approximation
- but overfitting for learning? :-(
- how about regularization? e.g. ridge regression for β instead -optimal $\beta=\left(\mathrm{Z}^{T} \mathrm{Z}+\lambda \mathrm{I}\right)^{-1} \mathrm{Z}^{T} \mathbf{y}$
- seen Z? Z $=\left[\operatorname{Gaussian}\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right]=$ Gaussian kernel matrix K
effect of regularization in different spaces:
kernel ridge regression: $\beta=(\mathrm{K}+\lambda \mathrm{I})^{-1} \mathbf{y}$; regularized full RBFNet: $\beta=\left(\mathrm{Z}^{\top} \mathrm{Z}+\lambda \mathrm{I}\right)^{-1} \mathrm{Z}^{\top} \mathbf{y}$

Fewer Centers as Regularization

recall:

$$
g_{\mathrm{svm}}(\mathbf{x})=\operatorname{sign}\left(\sum_{\mathrm{sV}} \alpha_{m} y_{m} \exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}_{m}\right\|^{2}\right)+b\right)
$$

—only ' $\ll N$ ' SVs needed in 'network'

- next: $M \ll N$ instead of $M=N$
- effect: regularization
by constraining number of centers and voting weights
- physical meaning of centers μ_{m} : prototypes
remaining question: how to extract prototypes?

Fun Time

If $\mathbf{x}_{1}=\mathbf{x}_{2}$, what happens in the Z matrix of full Gaussian RBF network?
(1) the first two rows of the matrix are the same
(2) the first two columns of the matrix are different
(3) the matrix is invertible
(4) the sub-matrix at the intersection of the first two rows and the first two columns contains a constant of 0

Fun Time

If $\mathbf{x}_{1}=\mathbf{x}_{2}$, what happens in the Z matrix of full Gaussian RBF network?
(1) the first two rows of the matrix are the same
(2) the first two columns of the matrix are different
(3) the matrix is invertible
(4) the sub-matrix at the intersection of the first two rows and the first two columns contains a constant of 0

Reference Answer: (1)

It is easy to see that the first two rows must be the same; so must the first two columns. The two same rows makes the matrix singular; the sub-matrix in (4) contains a constant of $1=\exp (-0)$ instead of 0 .

Good Prototvpes: Clusterina Problem

if $\mathbf{x}_{1} \approx \mathbf{x}_{2}$,
\Longrightarrow no need both $\operatorname{RBF}\left(\mathbf{x}, \mathbf{x}_{1}\right)$ \& $\operatorname{RBF}\left(\mathbf{x}, \mathbf{x}_{2}\right)$ in RBFNet,
\Longrightarrow cluster \mathbf{x}_{1} and \mathbf{x}_{2} by one prototype $\mu \approx \mathbf{x}_{1} \approx \mathbf{x}_{2}$

- clustering with prototype:
- partition $\left\{\mathbf{x}_{n}\right\}$ to disjoint sets $S_{1}, S_{2}, \cdots, S_{M}$
- choose μ_{m} for each S_{m}
—hope: $\mathbf{x}_{1}, \mathbf{x}_{2}$ both $\in S_{m} \Leftrightarrow \mu_{m} \approx \mathbf{x}_{1} \approx x_{2}$
- cluster error with squared error measure:

$$
E_{\text {in }}\left(S_{1}, \cdots, S_{M} ; \mu_{1}, \cdots, \mu_{M}\right)=\frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{M} \llbracket \mathbf{x}_{n} \in S_{m} \rrbracket\left\|\mathbf{x}_{n}-\boldsymbol{\mu}_{m}\right\|^{2}
$$

goal: with S_{1}, \cdots, S_{M} being a partition of $\left\{\mathbf{x}_{n}\right\}$,

$$
\min _{\left\{S_{1}, \cdots, S_{M} ; \mu_{1}, \cdots, \mu_{M}\right\}} E_{\text {in }}\left(S_{1}, \cdots, S_{M} ; \mu_{1}, \cdots, \mu_{M}\right)
$$

Partition Optimization

with S_{1}, \cdots, S_{M} being a partition of $\left\{\mathbf{x}_{n}\right\}$,

$$
\min _{\left\{S_{1}, \ldots, S_{M}: \mu_{1}, \cdots, \mu_{M}\right\}} \sum_{n=1}^{N} \sum_{m=1}^{M} \llbracket \mathbf{x}_{n} \in S_{m} \rrbracket\left\|\mathbf{x}_{n}-\mu_{m}\right\|^{2}
$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly if μ_{1}, \cdots, μ_{M} fixed, for each \mathbf{x}_{n}
- $\llbracket \mathbf{x}_{n} \in S_{m} \rrbracket$: choose one and only one subset
- $\left\|\mathbf{x}_{n}-\mu_{m}\right\|^{2}$: distance to each prototype
optimal chosen subset $S_{m}=$ the one with minimum $\left\|\mathbf{x}_{n}-\mu_{m}\right\|^{2}$ for given μ_{1}, \cdots, μ_{M}, each \mathbf{x}_{n} 'optimally partitioned' using its closest μ_{m}

Prototype Optimization

with S_{1}, \cdots, S_{M} being a partition of $\left\{\mathbf{x}_{n}\right\}$,

$$
\min _{\left\{S_{1}, \cdots, S_{M} ; \mu_{1}, \cdots, \mu_{M}\right\}} \sum_{n=1}^{N} \sum_{m=1}^{M} \llbracket \mathbf{x}_{n} \in S_{m} \rrbracket\left\|\mathbf{x}_{n}-\boldsymbol{\mu}_{m}\right\|^{2}
$$

- hard to optimize: joint combinatorial-numerical optimization
- two sets of variables: will optimize alternatingly
if S_{1}, \cdots, S_{M} fixed, just unconstrained optimization for each μ_{m}

$$
\nabla_{\boldsymbol{\mu}_{m}} E_{\text {in }}=-2 \sum_{n=1}^{N} \llbracket \mathbf{x}_{n} \in S_{m} \rrbracket\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{m}\right)=-2\left(\left(\sum_{\mathbf{x}_{n} \in S_{m}} \mathbf{x}_{n}\right)-\left|S_{m}\right| \boldsymbol{\mu}_{m}\right)
$$

optimal prototype $\mu_{m}=$ average of \mathbf{x}_{n} within S_{m}
for given S_{1}, \cdots, S_{M}, each μ_{n} 'optimally computed' as consensus within S_{m}

k-Means Algorithm

use k prototypes instead of M historically
(different from k nearest neighbor, though)

k-Means Algorithm

(1) initialize $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$: say, as k randomly chosen \mathbf{x}_{n}
(2) alternating optimization of $E_{\text {in }}$: repeatedly
(1) optimize $S_{1}, S_{2}, \ldots, S_{k}$:
each \mathbf{x}_{n} 'optimally partitioned' using its closest μ_{i}
(2) optimize $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$:
each μ_{n} 'optimally computed' as consensus within S_{m} until converge
converge: no change of $S_{1}, S_{2}, \ldots, S_{k}$ anymore -guaranteed as $E_{\text {in }}$ decreases during alternating minimization
k-Means: the most popular clustering algorithm through alternating minimization

RBF Network Using k-Means

RBF Network Using k-Means

(1) run k-Means with $k=M$ to get $\left\{\boldsymbol{\mu}_{m}\right\}$
(2) construct transform $\boldsymbol{\Phi}(\mathbf{x})$ from RBF (say, Gaussian) at μ_{m}

$$
\boldsymbol{\Phi}(\mathbf{x})=\left[\operatorname{RBF}\left(\mathbf{x}, \boldsymbol{\mu}_{1}\right), \operatorname{RBF}\left(\mathbf{x}, \boldsymbol{\mu}_{2}\right), \ldots, \operatorname{RBF}\left(\mathbf{x}, \boldsymbol{\mu}_{M}\right)\right]
$$

(3) run linear model on $\left\{\left(\boldsymbol{\Phi}\left(\mathbf{x}_{n}\right), y_{n}\right)\right\}$ to get β
(4) return $g_{\text {RBFNET }}(\mathbf{x})=$ LinearHypothesis $(\boldsymbol{\beta}, \boldsymbol{\Phi}(\mathbf{x}))$

- using unsupervised learning (k-Means) to assist feature transform—like autoencoder
- parameters: M (prototypes), RBF (such as γ of Gaussian)

RBF Network: a simple (old-fashioned) model

Fun Time

For k-Means, consider examples $\mathbf{x}_{n} \in \mathbb{R}^{2}$ such that all $x_{n, 1}$ and $x_{n, 2}$ are non-zero. When fixing two prototypes $\mu_{1}=[1,1]$ and $\mu_{2}=[-1,1]$, which of the following set is the optimal S_{1} ?
(1) $\left\{\mathbf{x}_{n}: x_{n, 1}>0\right\}$
(2) $\left\{\mathbf{x}_{n}: x_{n, 1}<0\right\}$
(3) $\left\{\mathbf{x}_{n}: x_{n, 2}>0\right\}$
(4) $\left\{\mathbf{x}_{n}: x_{n, 2}<0\right\}$

Fun Time

For k-Means, consider examples $\mathbf{x}_{n} \in \mathbb{R}^{2}$ such that all $x_{n, 1}$ and $x_{n, 2}$ are non-zero. When fixing two prototypes $\mu_{1}=[1,1]$ and $\mu_{2}=[-1,1]$, which of the following set is the optimal S_{1} ?
(1) $\left\{\mathbf{x}_{n}: x_{n, 1}>0\right\}$
(2) $\left\{\mathbf{x}_{n}: x_{n, 1}<0\right\}$
(3) $\left\{\mathbf{x}_{n}: x_{n, 2}>0\right\}$
(4) $\left\{\mathbf{x}_{n}: x_{n, 2}<0\right\}$

Reference Answer: (1)

Note that S_{1} contains examples that are closer to μ_{1} than μ_{2}.

Beauty of k-Means

$$
k=4
$$

iteration 0

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

iteration 1

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

iteration 2

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

iteration 2

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

iteration 3

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

iteration 3

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

iteration 5

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

iteration 5

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

iteration 6

usually works well with proper k and initialization

Beauty of k-Means

$$
k=4
$$

iteration 6

usually works well with proper k and initialization

Difficulty of k-Means

'sensitive' to k and initialization

Difficulty of k-Means

$k=2$	$k=4$	$k=7$
	iteration 7	

'sensitive' to k and initialization

RBF Network Using k-Means

reasonable performance with proper centers

Full RBF Network

$\begin{gathered} k=N \\ \lambda=0.001 \end{gathered}$	$k=4$	nearest neighbor

full RBF Network: generally less useful

Fun Time

When coupled with ridge linear regression, which of the following RBF Network is 'most regularized'?
(1) small M and small λ
(2) small M and large λ
(3) large M and small λ
(4) large M and large λ

Fun Time

When coupled with ridge linear regression, which of the following RBF Network is 'most regularized'?
(1) small M and small λ
(2) small M and large λ
(3) large M and small λ
(4) large M and large λ

Reference Answer: (2)

small M : fewer weights and more regularized; large λ : shorter β more and more regularized.

Summary

(1) Embedding Numerous Features: Kernel Models
(2) Combining Predictive Features: Aggregation Models
(3) Distilling Implicit Features: Extraction Models

Lecture 14: Radial Basis Function Network

- RBF Network Hypothesis
prototypes instead of neurons as transform
- RBF Network Learning
linear aggregation of prototype 'hypotheses'
- k-Means Algorithm
clustering with alternating optimization
- k-Means and RBF Network in Action
proper choice of \# prototypes important
- next: extracting features from abstract data

